Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺⁺ by NAAC - V Cycle (CGPA 3.53) Affiliated to **Manonmaniam Sundaranar University, Tirunelveli** # **DEPARTMENT OF BOTANY** TEACHING PLAN (UG) ODD SEMESTER 2025-2026 #### Vision To impart knowledge with professional zeal and devotion for plant science #### Mission Providing student – centered and profession- oriented higher education that bestows academic environment to create intellectuals with scientific temperament, in the context of global issues and environmental challenges. #### **Graduate Attributes** Graduates of our College develop the following attributes during the course of their studies. #### > Creative thinking: Equipping students with hands-on-training through skill-based courses and promote startup. #### > Personality development: Coping with increasing pace and change of modern life through value education, awareness on human rights, gender issues and giving counselling for the needful. #### **Environmental consciousness and social understanding:** Reflecting upon green initiatives and understanding the responsibility to contribute to the society; promoting social and cultural diversity through student training and servicelearning programmes. #### **Communicative competence:** Offering effective communication skills in both professional and social contexts through bridge courses and activities of clubs and committees. #### > Aesthetic skills: Engaging mind, body and emotions for transformation through fine arts, meditation and exercise; enriching skills through certificate courses offered by Holy Cross Academy. #### **Research and knowledge enrichment:** Getting in-depth knowledge in the specific area of study through relevant core papers; ability to create new understanding through the process of critical analysis and problem solving. #### > Professional ethics: Valuing honesty, fairness, respect, compassion and professional ethics among students. The students of social work adhere to the *National Association of Social Workers Code of Ethics* #### > Student engagement in the learning process: Obtaining extensive and varied opportunities to utilize and build upon the theoretical and empirical knowledge gained through workshops, seminars, conferences, industrial visits and summer internship programmes. #### **Employability:** Enhancing students in their professional life through Entrepreneur development, Placement & Career guidance Cell. #### **Women empowerment and leadership:** Developing the capacity of self-management, team work, leadership and decision making through gender sensitization programmes. **Programme Educational Objectives (PEOs)** | PEOs | Upon completion of B.A/B.Sc. Degree Programme, the graduates will be able to: | Mapping
with
Mission | |------|--|----------------------------| | PEO1 | apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise. | M1& M2 | | PEO2 | use practical knowledge for developing professional empowerment and entrepreneurship and societal services. | M2, M3, M4
& M5 | | PEO3 | pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards. | M3, M4, M5
& M6 | |------|--|--------------------| |------|--|--------------------| Programme Outcomes (POs) | Pos | Upon completion of B.Sc. Degree Programme, the | Mapping | |-----|--|----------------| | | graduates will be able to: | with PEOs | | PO1 | obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. | PEO1 | | PO2 | create innovative ideas to enhance entrepreneurial skills for economic independence. | PEO2 | | PO3 | reflect upon green initiatives and take responsible steps to build a sustainable environment. | PEO2 | | PO4 | enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career. | PEO1
&PEO3 | | PO5 | communicate effectively and collaborate successfully with peers to become competent professionals. | PEO2&PEO3 | | PO6 | absorb ethical, moral and social values in personal and social life leading to highly cultured and civilized personality | PEO2 &
PEO3 | | PO7 | participate in learning activities throughout life, through self-
paced and self-directed learning to improve knowledge and
skills. | PEO1&PEO3 | # Programme Specific Outcomes (PSOs) | PSOs | On successful completion of the B.Sc. Botany programme, the students are expected to: | Mapping
with POs | |-------|---|---------------------| | PSO1 | implement the concept of science and technology to foster the traditional and modern techniques for solving the complex problems in Plant Biology. | PO4 | | PSO2 | ensure the use of contemporary tools and techniques in understanding the scope and significance of Botany | PO1& PO3 | | PSO3 | develop the scientific problem solving skills during experimentation, research projects, analysis and interpretation of data | PO4 & PO7 | | PSO4 | design scientific experiments independently and to generate useful information to address various issues in Botany. | PO6 & PO7 | | PSO5 | enhanced capacity to think critically; ability to design and execute experiments independently and/or team under multidisciplinary settings | PO2 & PO5 | | PSO6 | design and standardize protocols for public health and safety, and cultural, societal, and environmental considerations | PO6 & PO3 | | PSO7 | apply appropriate techniques, resources, and modern ICT tools for understanding plant resources. | PO2 & PO7 | | PSO8 | demonstrate the contextual knowledge in sustainable exploitation of medicinal, economically important and endangered plants as per the National Biodiversity Act. | | | PSO9 | follow the concept of professional ethics and bioethics norms for practicing the value of plant kingdom. | PO6 | | PSO10 | communicate proficiently with various stakeholders and society, to comprehend and to write and present reports effectively | PO4 & PO6 | Class : I B.Sc. Botany Title of the Course: Core I PLANT DIVERSITY I - ALGAE Semester : I Course Code : BU231CC1 | Course Code | L | | | S Credits | | Inst. | Total | Marks | | | |-------------|---|---|---|-----------|---|-------|-------|-------|----------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | BU231CC1 | 3 | 2 | - | 1 | 5 | 5 | 75 | 25 | 75 | 100 | # **Learning Objectives** - 1. To provide a comprehensive knowledge on the biology of algae and to understand the evolution higher of plants. - 2. To understand the role of algae in ecosystems as primary producers of nutrition and also the importance of algae to animals and humans. | COs | Upon completion of this course, students will be able to: | | |-----|---|---------| | 1 | relate to the structural organization, reproduction and significance of algae. | K2 &K5 | | 2 | demonstrate knowledge in understanding the various life cycle patterns and the fundamental concepts in algal growth | K3 &K1 | | 3 | explain the benefits of various algal technologies on the ecosystem. | K1 | | 4 | compare and contrast the thallus organization and modes of reproduction in algae. | K4 & K5 | | 5 | determine the emerging areas of Algal Biotechnology for identifying commercial potentials of algal products and their uses. | K5 & K6 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--------|--|-------------------|---------------------|--------------------|---|---|---|---| | I | 1 | | | _ | | | Participative | Video Lectures, | Formative | | | 1 | General characters of Algae | 4 | 2 | K2(U) | Refllective
Thinking, Live
Specimen | learning-
Brain
Storming,
Group
Discussion | E-content- MS
word | Quiz using Kahoot / Google Forms Assignment. | | | 2 | Classification of algae (Fritsch-1935-1945). | 4 | | K1(R) | Gamification,
Mind
mapping, | Participative learning-Charts, Interaction in the classroom | Video Lectures,
E-content-
External links | Memory
Game,
Quizziz,
MCQs. | | | 3 | Criteria for
Classification. | 4 | 1 | K2(U) | Simulation Based Approach, lecture method | Participative
learning-
Panel
Discussion | GAMMA PPT,
E-content- MS
word | Slip Test, Open book test, Question- Answer Session | | | 4 | Algal
Distribution | 3 | | K2(U) | Integrative
teaching,
Field Study,
and
outdoor
activities | Experiential Learning- Describing Visual images | Interactive PPT,
Youtube Videos | Quizzes, Just a
Minute,
student
presentation | | II | 1 | Thallus organization – unicellular Chlorella, Diatoms | 3 | 1 | K2(U) | Inquiry Based Approach, Live Specimens | Experiential Learning- Preparing and demonstrati ng exhibit, | Interactive PPT,
Whatsapp poll | Online Quiz-
Quizzes,
Creative
Drawing | |----|---|--|---|---|-------|---|--|---|---| | | 2 | Thallus organization - colonial Volvox | 3 | | K2(U) | Blended
Learning - Live
Specimens | Collaborativ
e learning-
Album
making | Discussion
Forum - Google
classroom | Surprise test,
Identification
of specimen,
Diagram
evaluation | | | 3 | Thallus organization filamentous Anabaena, Oedogonium. | 3 | 1 | K2(U) | Flipped
Classroom -
Slides | Experiential
Learning-
Using visual
images and
models | E content - PPT, Mentimeter | Identification
of specimen,
Diagram
evaluation,
Slip Test. | | | 4 | Thallus organization - siphonous Caulerpa. | 3 | | K2(U) | Integrative Teaching -Live Specimen, Lecture Method | Collaborativ
e learning-
Hands-On
Demonstrati
on, Charts
and Models,
Field visit | Interactive E-book, Google classroom | Seminar Presentation, Identification of specimen, Diagram evaluation | | | 5 | Thallus organization - parenchymato us- | 3 | 1 | K2(U) | Emboded
Learning,
KWL | Experiential
Learning-
Hands-On
Demonstrati | E-content - MS
word,
Mentimeter | Identification of specimen, Diagram evaluation | | | | Sargassum,
Gracilaria. | | | | | on, Visual images | | | |-----|---|--|---|---|---------|--|---|---|--| | III | 1 | Reproduction Vegetative, asexual, sexual reproduction and life histories haplontic Oedogonium and Chara. | 3 | 1 | K4 (An) | Cooperative
Learning -
Microscopic
slides, Live
specimens, | Participative
Learning-
Skit and
Role play | E - content with GAMMA PPT | Quizzes, Open
book test,
Identification
of specimen,
Diagram
evaluation | | | 2 | Reproduction Vegetative, asexua l, sexual reproduction and life histories of Diatoms | 3 | | K4 (An) | Blended Learning - Lecture using videos, Microscopic slides, Field Visit | Experiential
Learning-
Demonstrati
on using
microscopic
slides | Video display,
O lab | Unannounced test, Identification of specimen, Diagram evaluation, MCQ. | | | 3 | Reproduction Vegetative, asexua l, sexual reproduction and life histories of Sargassum. | 3 | 1 | K4 (An) | Reflective
Thinking -
Live
specimen | Experiential
Learning -
Video
Making | You tube
videos, E-
content -
External Links | Team Work
Analysis and
Interpretation,
Slip Test. | | | 4 | Reproduction Vegetative, asexual, sexual reproduction and life histories of <i>Ulva</i> . | 3 | 1 | K4 (An) | Blended
Learning - Live
specimen,
Slides | Participative
learning-
Demonstrati
on with
specimen,
Quiz
competition | E-content with MS Word | Oral test, Just a
Minute | |----|---|---|---|---|---------|--|--|---|---| | | 5 | Reproduction Vegetative, asexual, sexual reproduction and life histories of Gracilaria. | 3 | | K4 (An) | Inquiry Based Approach - Live specimen, Slides | Participative learning-
Assignment | Youtube videos,
Interactive E-
book | Flow Chart
Analysis,
MCQ.
Assessing
Memory game,
CIA I | | IV | 1 | Algal cultivation methods | 3 | 1 | K2(U) | Reflective
Thinking,
Inquiry Based
Approach | Participative
learning-
Brain
storming,
Debate | Econtent with GAMMA PPT | Quiz using Kahoot / Google Forms,Oral Presentation | | | 2 | Algal production method s | 3 | 1 | K2(U) | Integrative Teaching - Mind map, Lecture Method | Collaborativ e learning- Panel Discussions | O lab | Slip Test, Oral
Presentation,
MCQs. | | | 3 | Indoor
cultivation
methods | 3 | | K3(Ap) | Flipped classroom, Demonstrative approach | Participative
learning-
Interactive
classroom
games | E-content with
MS Word,
Google
Classroom | Surprise test, Open book test, Question- Answer Session | | | 4 | Large-scale cultivation of algae | 3 | 1 | K3(Ap) | Blended
Learning, KWL | Experiential
Learning-
Demonstrati
on of
experiments | E-content with MS Powerpoint | Quizzes, Just a
Minute, Flow
Chart Analysis | |---|---|--|---|---|--------|---|--|--|--| | | 5 | Harvesting of algae | 3 | | K4(An) | Reflective
Thinking,
Lecture using
videos, | Participative
Learning-
Exhibit of
algal
products | Youtube videos,
Mentimeter | Quiz, Group
Presentation,
Open book
test, Sales day | | V | 1 | Algae as food and feed: Agar-agar, Alginic acid and Carrageenan; Diatomite. | 3 | 1 | K3(An) | Inquiry-Based
Learning,
Lecture with
Visual Aids | Experientiall earning- Preparing and Demonstrati ng the products | Video Lectures,
E-content- MS
word | Just a minute,
Exhibit on
algal products | | | 2 | Resource potential of algae: Application of algae as fuel, agriculture and pharmaceutical. | 3 | 1 | K3(Ap) | Flipped
Classroom,
Mind Map,
Stimulation
based approach | Participative Learning- Charts and models, Demonstr ative approach | Youtube videos,
E-content- MS
word | Quiz, Group
Presentation,
MCQs. | | 3 | Phytoremediation. Role of algae in CO2 sequestration, | 3 | | K3(Ap) | Reflective Thinking, Lecture with illustration | Experiential learning-Role play, chart | Video Lectures,
E-content- MS
word | Slip Test,
Open book
test, Oral
presentation | |---|---|---|---|--------|--|---|--|--| | 4 | Algae as indicator of water pollution | 3 | 1 | K2(U) | Integrative
Teaching,
Simulation
Based Approach | Experiential Learning- Hands-On Demonstrat ion, Chart, mind map | Interactive PPT,
Youtube Videos | Quizzes, Just a
Minute, CIA II | | 5 | Algal bioinoculants, Bioluminescence. | 3 | | K4(An) | Inquiry-Based teaching, Lecture with illustration | Participative learning-
Poster Presentation | E-content with MS Powerpoint | Question-
Answer
Session, Flow
chart analysis | Course Focussing on / Entrepreneurship/ Skill Development: Employability, Entrepreneurship, Skill Development Activities (Em / En /SD): Employability: Algae Identification Entrepreneurship: Algae Cultivation, Algal Cuisine Skill Development: Algae Data Collection and Analysis, Water Quality Analysis, Laboratory algal culture Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability Activities related to Cross Cutting Issues: Exhibition: : Algal products # **Sample Questions** #### Part A (1 mark) - 1. Who is known as the "father of Indian phycology"? (K1-R, CO-1) - a) Carl Linnaeus - b) William Henry Harvey - c) M.O.P. Iyengar - d) Felix Eugen Fritsch - 2. Which statement correctly describes the thallus organization of Oedogonium? (K1-R, CO-2) - a) Oedogonium forms dense mats or filamentous growths in marine habitats. - b) Oedogonium exhibits branched filaments composed of cells arranged end to end. - c) Growth in Oedogonium primarily occurs at the basal regions of the filaments. - Sd) Oedogonium has a filamentous structure consisting of long, unbranched chains of cells. - 3. A stem node of *Chara* bears -----(**K1-R, CO-3**). - 4. Write any two examples for large scale cultivation of Algae (K1-R, CO-4). - 5. Assertion and Reasoning: (K4-An, CO-5) Assertion: Algal bioinoculants are environmentally sustainable alternatives to chemical fertilizers and pesticides. Reasoning: They help plants withstand environmental stresses such as drought, salinity, and heavy metal contamination. - a) Both assertion and reasoning are true, and the reasoning is the correct explanation of the assertion. - b) Both assertion and reasoning are true, but the reasoning is not the correct explanation of the assertion. - c) Assertion is true, but the reasoning is false. - d) Assertion is false, but the reasoning is true. #### Part B (3 marks) - 1. Write short notes on algal distribution .(K1-R, CO-1) - 2. Schematically represent the thallus organization of Oedogonium. (K3-Ap, CO-2) - 3. How vegetative reproduction occurs in *Chara?*
(K2-U, CO-3) - 4. Analyze the indoor cultivation methods of algae? (K4-An, CO-4) - 5. Algae can be supplemented as food- Justify your answer. (K4-An, CO-5) # Part C (7 marks) - 1. 1. List out the general characters of algae.(K1-R, CO-1) - 2. Summarize the thallus organisation of *Chlorella* with a neat sketch. (K3-Ap, CO-2) - 3. Schematically represent the life cycle of *Gracillaria* with detailed description. **K4-An, CO-3**) - 4. Describe the different harvesting methods of algae. **K2-U, CO-4**) - 5. Evaluate the nature of algae in bioluminescence with suitable examples. (K5-E, CO-5) **Head of the Department** **Course Instructor** Dr.Sr.P.Leema Rose Dr.J.Albino Wins & Dr.A.R.Florence Class : I B.Sc. Botany Title of the Course : CORE LAB COURSE I: PLANT DIVERSITY I: ALGAE Course Code : BU231CP1 | Course Code | L | Т | P S Credits Inst. Hours | Credits Inst. Hours | | Total | | Marks | | | |-------------|---|---|-------------------------|---------------------|---|-------|-------|-------|----------|-------| | | | | | | | | Hours | CIA | External | Total | | BU231CP1 | 1 | - | 2 | _ | 3 | 3 | 45 | 25 | 75 | 100 | # **Learning Objectives:** - 1. To develop skills to identify micro and macroalgae based on habitat, thallus structure and the internal organization. - 2. To develop skills to prepare the microslides of algae. | COs | Upon completion of this course, students will be able to: | | |-----|--|-----------------| | 1 | recall and identify algae using key identification characters. | K1(R) | | 2 | demonstrate practical skills in preparation of fresh mount and identification of algal forms from algal mixture. | K3(Ap) &K2(U) | | 3 | describe the internal structure of algae prescribed in the syllabus | K2(U) | | 4 | decipher the algal diversity in fresh/marine water and their economic significance. | K4 (An) &K6 (C) | | 5 | evaluate the various techniques used to culture algae for commercial purposes | K5 (E) | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Teaching plan Total Contact hours: 45 (Including lectures, assignments and tests) | Unit | Торіс | Teaching
Hours | Assessme
nt Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|-------------------|----------------------|-----------------|---|---|----------------------------------|--| | 1. | Micro-preparation Caulerpa - Thallus | 2 | 1 | K4(An) | Reflective
Thinking,
lecture method | Experiential learning - Demonstration of experiments | O Lab | Evaluation of slides, observation notes and diagrams | | 2. | Micro-preparation - Sargassum – Stipe and Leaf | 2 | | K4(An) | Flipped
Classroom,
Stimulation
based approach | Experiential Learning - Using live specimen | Google
Classroom | Evaluation of slides, observation notes and diagrams | | 3. | Micro-preparation <i>Gracilaria</i> - Thallus | 2 | 1 | K4(An) | Reflective
Thinking,
Lecture with
illustration | Experiential Learning - Using live specimen, Preparing slides | E content -
external
Links | Evaluation of slides, observation notes and diagrams | | 4. | Micro-preparation - Ulva – Thallus | 2 | | K4(An) | Integrative Teaching, Simulation Based Approach | Experiential Learning- Hands-On Demonstratio n | Youtube
Videos | Evaluation of slides, observation notes and diagrams | |----|--|---|---|--------|---|--|-------------------------|--| | 5. | Micro-preparation - Chara - Thallus | 2 | | K4(An) | Inquiry based approach | Experiential Learning- Slide Preparation, Live specimen | Youtube
Videos | Cobservation notes and diagrams | | 6. | Identifying the micro slides - <i>Chlorella</i> | 2 | 1 | K2(U) | Reflective approach | Experiential
Learning-
Observation of
Permanent
Slides | Self Prepared
Videos | Homework -
Diagrams,
Evaluation of
slides | | 7. | Identifying the micro slides - Identifying the micro slides - <i>Volvox</i> with daughter colony | 2 | | K2(U) | Integrative approach | Experiential
Learning-
Observation of
Permanent
Slides | Youtube
Videos | Homework -
Diagrams,
Evaluation of
slides | | 8. | Identifying the micro slides - <i>Volvox</i> antheridia, <i>Volvox</i> archegonia | 2 | 1 | K2(U) | Reflective
Thinking,
Flipped
Classroom | Experiential
Learning-
Observation of
Permanent
Slides | Interactive PPT | Evaluation of slides, Diagram Correction | | 9. | Identifying the micro slides <i>Anabaena</i> | 2 | | K2(U) | KWL, Hands on
Trainning
sessions. | Experiential Learning- Observation of Permanent Slides | Youtube
Videos | Evaluation of slides, Diagram Correction | |-----|--|---|---|--------|--|--|-------------------------|--| | 10. | Identifying the micro slides - Oedogonium | 2 | | K2(U) | Lectures with
Illustration,
Brain Storming | Experiential
Learning-
Observation of
Permanent
Slides | Econtent with GAMMA PPT | Evaluation of slides, Diagram Correction | | 11. | Identifying the micro slides - Sargassum male conceptacle, Sargassum female conceptacle | 2 | 1 | K2(U) | Reflective
Thinking,
Inquiry Based
Approach | Experiential
Learning-
Observation of
Permanent
Slides | O lab | Evaluation of slides, Diagram Correction | | 12. | Identifying the micro slides - <i>Gracilaria</i> Cystocarp | 3 | | K2(U) | Hands on
Trainning,
Flipped
classrooms | Experiential Learning- Observation of Permanent Slides | O Lab | Evaluation of slides, Diagram Correction | | 13. | Identifying types of algal mixture | 3 | | K4(An) | Lecture with Illustration, Simulation based approach | Collabrative learning-
Demonstration | O-Lab | Evaluation of slides and diagrams | | 14. | Economic importance of Algae as: Food, Feed, Biofertilizers, Seaweed liquid | 2 | 1 | K1(R) | Demonstrative approach | Participative
learning- Exhit
of spotters | Interactive
PPT | Evaluation of diagrams | | | fertilizer, Hydrogen production by algae | | | | | | | | |-----|---|---|---|--------|--|---|-------------------------|------------------------| | 15. | Economic importance of Algae as: SCP, Agar Agar, Alginate, Diatomaceous earth | 2 | | K1(R) | Reflective
Thinking,
Inquiry Based
Approach | Participative
learning- Exhit
of spotters | Econtent with GAMMA PPT | Evaluation of diagrams | | 16. | Field visit to study
fresh water/marine
water algal habitats. | 3 | 1 | K4(An) | Experiential
Learning | Collabrative
learning- Team
Discussions,
Field visit | Virtual
Images | Evaluation of report | | 17. | Visit to nearby industry actively engaged in algal technology. | 3 | | K4(An) | Experiential
Learning | Collabrative
learning- Team
Discussions,
Field visit | Virtual
Images | Evaluation of report | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em / En /SD): Hands on Training on Slide Preperation, Sectioning, mounting, Microscopic Analysis Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Activities related to Cross Cutting Issues: Exhibit on Algal products # **Sample Questions** 1. Make suitable micro preparation of A & B. Stain and mount in glycerin. Identify giving reasons, write systematic position, draw labeled sketches, and submit the slides for evaluation. (2x10=20 marks) 2. Identify any two microalgae present in the given algae mixture C and report. Draw labeled sketches and write notes. (2x8=16 marks) 3. Identify, draw diagram and write notes on D & E. (2x7=14 marks) 4. Identify, draw labeled sketches and write notes on F & G (2x5=10 marks) 5. Write the economic importance of H, I & J (3x5=15marks) **Head of the Department** **Course Instructor** Dr.Sr.P.Leema Rose Dr.J.Albino Wins & Dr.A.R.Florence Class : I B.Sc Chemistry Title of the Course : Elective Course I: Allied Botany -I Semester : I Course Code : BU231EC1 | Course Code | L T P S Credits Inst. Hours | Credits Inst. Hours | | Total | Marks | | | | | | |-------------|-----------------------------|---------------------|---|-------|-------|------------------|-------|-----|----------|-------| | | | | _ | | | 111000 1110 0110 | Hours | CIA | External | Total | | BU231EC1 | 4 | _ | _ | _ | 3 | 4 | 60 | 25 | 75 | 100 | # **Learning Objectives:** 1. To study morphological and anatomical adaptations of plants of various habitats. 2. To demonstrate techniques and experiments in plant tissue culture, plant physiology and biochemistry. | COs | Upon completion of this course, students will be able to: | CL | |------|--|---------| | CO-1 | increase the awareness and appreciation of human friendly algae and their economic importance. | K3 (Ap) | | CO-2 | develop an understanding of microbes and fungi and
appreciate their adaptive strategies | K2 (U) | | СО-3 | develop critical understanding on morphology, anatomy and reproduction of Bryophytes, Pteridophytes and Gymnosperms. | K2 (U) | | CO-4 | compare the structure and function of cells and explain the development of cells. | K4 (An) | | CO-5 | understand the core concepts and fundamentals of plant biotechnology and genetic engineering. | K2 (U) | Teaching Plan Total Contact hours*: 60 (Including lectures, assignments and tests) | Unit | Module (Minimum 5 to Maximum 10 modules are permitted) | Торіс | Teaching
Hours | Assessment hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|---|-------------------|------------------|--------------------|---|--|------------------------------------|--| | I | | | | | | | | | | | | 1 | General characters of algae | 2 | 1 | K1 (R) | Inquiry based approach, PPT & Videos | Inquiry based approach | Video,
Notes/Slides
& PPT | Short-
Answer
Tests.
Assignments | | | 2 | Structure,
reproduction
and life cycle
of - Anabaena | 4 | 1 | K2 (U) | Permanent
Slides,
diagrams,
interactive
discussions | Group discussion, Interaction in the classroom | Video, PPT,
Simulation
Notes | quizzes,
class test,
formative
assessment,
Recall steps,
Assignments,
MCQ, | | | 3 | Structure, reproduction and life cycle of Sargassum | 3 | 1 | K2 (U) | Group
discussion,
diagrams,
videos,
microscope
slides, | Brainstorming,
Group work,
PPT | PowerPoint,
Notes | Diagrams and Labeling, Multiple- choice questions, short answer | | | | | | | | | | | questions,
and essay
questions, | |----|----|--|---|---|------------|---|---|---------------------------|---| | | 4 | Economic importance of algae | 2 | | K3
(Ap) | Lecture, group
discussion,
PPT, debates | Assignment,
Mind map | PPT.
Youtube
Videos | MCQ,
True/False,
Evaluation
through class
test,. | | II | | | | | | | | | | | | 1. | General
characters of
fungi | 2 | 1 | K1 (R) | Chalk and
board,
diagrams, PPT | Brainstorming | Interactive
PPT | class tests,
group
discussion
formative
assessments,
summative
assessments, | | | 2. | Structure, reproduction and life cycle of <i>Penicillium</i> | 2 | | K2 (U) | Flipped classroom,
Lecture, PPT, diagrams, chalk and board, videos | Brainstorming, interaction in the classroom | Interactive PPT, notes | formative
assessments,
MCQs,
diagram
labelling
short answer
questions, | | | 3. | Structure, reproduction and life cycle of <i>Agaricus</i> | 2 | 1 | K2 (U) | Lecture, PPT,
diagrams,
guided group
discussion,
flowcharts | Group discussion, peer review | PPT | true/false
statements,
or fill-in-the-
blank
questions,
class test,
formative | | | | | | | | | | | assessment, quiz | |-----|----|---|---|---|--------|---|---|-------------------------------------|---| | | 4. | economic
importance of
fungi | 1 | | K1 (R) | Inquiry based approach, Lecture, PPT, interactive discussion, | Brainstorming,
Quiz,
Powerpoint
presentation | Interactive PPT, notes | Class tests,
diagram
labelling,
online
quizzes
Assignments, | | | 5. | Bacteria - general characters, structure and reproduction of <i>Escherichia coli</i> and economic importance of bacteria. | 2 | 1 | K2 (U) | Lecture, PPT, diagrams, interactive discussions, cooperative learning | Group
discussion,
Powerpoint
presentation | Video,
Interactive
PPT, notes | Diagram Labeling, Short Answer Questions, Essay Questions | | | 6. | Virus - general characters, structure of TMV, structure of bacteriophage. | 2 | | K2 (U) | Inquiry based approach, Lecture, PPT, diagrams, Interactive Discussions | Interactive
PPT,
Brainstorming | Interactive
PPT, notes | MCQs, Diagram Labeling, Class test, Assignment, Visual Presentations Formative and Summative Assessments, | | III | | | | | | | | | | | | 1. | General | | 1 | K1 (R) | Lecture, PPT, | Group | Video, | Labelling | | | characters of
Bryophytes | 2 | | | illustrations,
Group
discussions | discussion,
Interactive
PPT | Interactive
PPT, notes | diagrams, Short Answer Questions, Diagram Construction Formative and Summative | |----|---|---|---|--------|--|---|--|--| | 2. | Structure and life cycle of Funaria. | 2 | | K2 (U) | Flipped
classroom,
Lecture, PPT,
Charts,
diagrams | Mind map,
Assignments, | YouTube
Video,
Interactive
PPT, notes | Assessments, Class test, Labeling Diagram, formative and summative assessments | | 3. | General
characters of
Pteridophytes | 2 | 1 | K1 (R) | Lecture, PPT,
diagrams,
Group
discussion | Team
teaching,
Group
discussion | Interactive PPT, notes | MCQs, Diagram labelling, essay question | | 4. | Structure and life cycle of <i>Lycopodium</i> . | 2 | | K2 (U) | Flipped
classroom,
Lecture, PPT,
flowcharts,
diagram | Brainstorming,
Interaction in
the classroom | YouTube
Video,
Interactive
PPT, notes | Life Cycle
Sequencing,
Diagram
Labeling,
Class test,
formative
assessment, | | 5. | General
characters of
Gymnosperms | 1 | 1 | K1 (R) | Inquiry based approach, Lecture, PPT, | Group
discussion,
Mind map, | Video,
Interactive
PPT, notes | Debate,
Assignment,
Class test, | | | | | | | | videos,
comparing
with other
groups of
plants | Interactive
PPT | | MCQs, | |----|----|---|---|---|--------|---|--|---|--| | | 6. | Structure and life cycle of <i>Cycas</i> . | 2 | | K2 (U) | Cooperative learning, Lecture, charts, chalk and board, diagram, lifecycle flowcharts | Flow chart,
Mind map | YouTube
Video,
Interactive
PPT, notes | Life Cycle
Sequencing,
Class test,
Labeling
Diagram, | | IV | | | | | | TIO W CHARLES | | | | | | 1. | Prokaryotic and Eukaryotic cell- structure /organization. | 2 | 1 | K2 (U) | Flipped
classroom,
Lecture, Chalk
and board,
PPT | Brainstorming,
Mind map | Interactive
PPT, Video,
notes | class test,
quizzes
Diagram
labelling, | | | 2. | ultra structure
and function
of chloroplast | 2 | | K2 (U) | Reflective
thinking,
lecture, PPT,
photos, videos | Interactive PPT, Assignments, | Interactive PPT, notes | class test, Assignment MCQs, essay test. Formative assessment, | | | 3. | ultra structure
and function
of
mitochondria | 2 | 1 | K2 (U) | Lecture,
reflective
thinking, PPT,
videos, photos | Group discussion. Interaction in the classroom | Interactive
PPT, notes,
YouTube
Video, | Short answer test, MCQs, Assignment Class test, | | | 4. | ultra structure and function | 2 | | K2 (U) | Brainstorming, lecture, PPT, | Team teaching, | Interactive PPT, | Quizzes,
formative | | | | of nucleus. | | | | Chart, videos | Group discussion,, | YouTube
Video, notes | assessment,
class test,
Assignment | |---|----|--|---|---|---------|--|---|---|---| | | 5. | Cell division - mitosis and meiosis. | 3 | 1 | K1 (R) | Lecture,
diagram,
photos, chalk
and board,
videos. | Mind map,
Assignment | Interactive
PPT, notes,
YouTube
Video, | MCQs, open
book test,
Short test | | V | 1. | Mendelism -
Law of
dominance,
Law of
segregation, | 4 | 1 | K2 (U) | Brainstorming,
lecture, group
discussions,
diagrams | Group
discussion,
peer review | PPT | MCQs,
formative
assessement,
Class tests, | | | 2. | Incomplete dominance. Law of independent assortment. | 3 | 1 | K2 (U) | Lecture, chalk
and board,
diagram,
videos | Quiz,
Powerpoint
presentation,
Brainstorming | Interactive PPT, notes | Class test,
MCQs,
formative
assessment,
quizzes | | | 3. | Monohybrid
and dihybrid
cross - Test
cross - Back
cross. | 4 | | K3 (Ap) | Inquiry based approach, Lecture, Chalk and board, PPT, | Powerpoint presentation, Group discussion | Video,
Interactive
PPT, notes | essay
questions,
MCQs, Fill
in the blanks. | | | 4. |
Plant tissue culture - <i>In</i> vitro culture methods. Plant tissue culture | 4 | 1 | K2 (U) | Videos,
flipped
classroom,
Lecture, chart,
flow chart, | Mind map,
Brainstorming | Interactive PPT, notes | MCQs. True
or False
online quiz, | | and its | | | PPT | | | |-------------|-----|--|-----|--|--| | | in | | | | | | biotechnolo | gy. | | | | | Course Focussing on Employability Employability Activities (Em / En /SD): Seminar, Assignment Course Focusing on Cross Cutting Issues Professional Ethics Assignment: Structure of TMV (Last date to submit –10-09-2025) # Sample questions (minimum one question from each unit) | | | | Part A - (1 marl | K) | |----|--------------------------|-----------------------------|---------------------------|------------------------------| | 1. | Which of the following i | s a brown alga with diffe | erentiated plant body and | d air bladders? (K1-R, CO-1) | | | a) Spirogyra | b) Anabaena | c) Sargassum | d) Chlamydomonas | | 2. | Which of the following i | s known for producing a | ntibiotics? (K2-U, CO- | 2) | | | 1. | | | | | | a) Agaricus | b) Rhizopus | c) Penicillium | d) Saccharomyces | | | 2. The dominant phase | in the life cycle of Funar | ria is (K1-R | (, CO-3) | | | a) Sporophyte | b) Gametophyte | c) Embryo | d) Zygote | | | 3. Which cell organelle | is responsible for cellula | ar respiration? (K2-U, C | CO-4) | | | | b) Mitochondria | | | | | 4. In a monohybrid cross | ss, the phenotypic ratio in | n the F2 generation is _ | (K3-Ap, CO-5) | | | a) 3:1 | b) 1:2:1 | c) 9:3:3:1 | d) 1:1 | | | | | Part B - (6 mark | ·s) | | | | | Tare D (O mark | | - 3. Describe the structure of *Anabaena*. (K1-R, CO-1) - 4. Explain the economic importance of Escherichia coli. (K2-U, CO-2) - 5. List any ten general characters of pteridophytes. (K1-R, CO-3) - 6. Differentiate between prokaryotic and eukaryotic cells. (K4-An, CO-4) - 7. Define test cross. Give an example. (K3-Ap, CO-5) Part C – (12 marks) - 1. Write an essay on the life cycle of Sargassum. (K1-R, CO-1) - 2. Describe the structure and reproduction of Escherichia coli. (K2-U, CO-2) - 3. Elaborate the life cycle of *Lycopodium*. (K3-Ap, CO-3) - 4. Describe the ultrastructure and functions of chloroplast (K2-U, CO-4) - 5. Discuss the applications of plant biotechnology (K2-U, CO-5) # **Head of the Department** Dr. Sr. Leema Rose **Course Instructors** Dr. Bojaxa A Rosy Dr. Sr. P. Leema Rose Class : I B. Sc Chemistry Title of the Course : ELECTIVE LAB COURSE I: ALLIED BOTANY PRACTICAL Semester : I Course Code : BU231EP1 | Course Code | L | T | P | S | Credits | Inst. | Total | N | Iarks | | |--------------------|---|---|---|---|---------|-------|-------|-----|--------------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | BU231EP1 | - | - | 2 | - | 2 | 2 | 30 | 25 | 75 | 100 | # **Learning Objectives:** 1. To understand the role of different components in generating pulses and stable signals. 2. To observe the frequency generation and stability of the oscillator circuits. | On | On the successful completion of the course, students will able to: | | | | | | | | | |----|---|----|--|--|--|--|--|--|--| | 1. | to study the internal organization of algae and fungi. | K1 | | | | | | | | | | develop critical understanding on morphology, anatomy and reproduction of | K2 | | | | | | | | | 2. | Bryophytes, Pteridophytes and Gymnosperms. | | | | | | | | | | 3. | to study the classical taxonomy with reference to different parameters. | K4 | | | | | | | | | 4. | understand the fundamental concepts of plant anatomy and embryology | K2 | | | | | | | | | 5. | to study the effect of various physical factors on photosynthesis. | К3 | | | | | | | | K1–Remember; K2–Understand; K3-Apply; K4-Analyze, K5- Evaluate, K6-Create # **Total Contact hours: 30 (Including Practical Classes and Assessments)** | Unit | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|-------------------|---------------------|--------------------|-----------------------|----------------------------------|-------------|--| | 1 | Make suitable micro preparation of a. Anabaena b. Sargassum - Stipe, Leaf, | 4 | 1 | K1 | Experimental learning | Performance
based
learning | | Record
diagram,
Plant section
assessment,
identification | | 2 | c. Penicillium d. Agaricus e. Structure of Bacteria f. Structure of Bacteriophage | 4 | 1 | K2 | Demonstrative | Brainstormin g | | Model Exam, record diagram | | 3 | Funaria – Stem,
Archegonial cluster,
Antheridial cluster,
Sporophyte L.S | 4 | 1 | K1 | Experimental learning | Performance
based
learning | | Record
diagram,
Plant section
assessment | | 4 | Lycopodium – Stem,
Cone
Cycas – Leaflet, T.S
Microsporophyll, T.S.
of Megasporophyll,
Ovule L.S | 4 | 1 | K2 | Experimental learning | Performance
based
learning | | Record
diagram,
Plant section
assessment | | 5 | Micro photographs of the cell organelles | 5 | | K2 | Experimental learning | Performance based | | Record diagram, | | | ultra structure –
Chloroplast,
Mitochondria,
Nucleus, Mitosis and
Meiosis | | | | learning | Stages
mitosis
meiosis
assessme | of
and
ent | |---|---|---|---|---------------|------------|---|------------------| | 6 | Simple Genetic Problem Biotechnology Spotters a. Hot Air Oven b. Laminar Air Flow Chamber Autoclave | 4 | 1 | Demonstrative | Practicals | Record
diagram,
identificate
genetics
problem
correction | ation, | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training on sectioning plant specimen. Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): NIL **Environment Sustainability activities related to Cross Cutting Issues: NIL** # Sample questions - 1. Make a suitable micro preparation of A and B. Identify, giving reasons, draw diagrams and submit the prepared slide for valuation. - 2. Solve the monohybrid genetic problems C - 3. Solve the dihybrid genetic problems D - 4. Identify, draw and write notes on E, F, G, H, I and J Head of the Department Course Instructors Dr. Sr. Leema Rose Dr. Bojaxa A Rosy Dr. Sr. P. Leema Rose **Department** : Zoology Class : I B.Sc. Botany Title of the Course : Non-Major Elective NME I: Nursery and Landscaping Semester : I Course Code : BU231NM1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | 0.00000 | | Hours | CIA | External | Total | | BU231NM1 | 2 | _ | _ | _ | 2 | 2 | 30 | 25 | 75 | 100 | # **Learning Objectives:** 1. To recognize the importancee of growing plants and practice the knowledge gained by developing kitchen garden and ornamental garden. 2. To be able to design gardens, learn the methods of propagation and become entrepreneur in Horticulture. | | On the successful completion of the course, students will be at | ole to: | |----|--|---------| | 1. | recognize the basic principles and components of gardening. | K2 | | 2. | explain about bio-aesthetic planning and conceptualize flower arrangement. | K1 | | 3. | apply techniques for design various types of gardens according to the culture and art of bonsai. | К3 | | 4. | compare and contrast different garden styles and landscaping patterns | K4 | | 5. | establish and maintain special types of gardens for outdoor and indoor landscaping. | K2 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
Level | Pedagogy | Student
Centric
Method | E –
Resources | Assessment/
Evaluation on
Methods | |------|----------|---|-------------------|---------------------|--------------------|--|-------------------------------------|-------------------------------------|---| | | UNIT: I | (6 Hrs) | | | | | T- | 1 | | | I | 1 | Introduction to
nursery and
landscaping | 2 | 1 | K1, K2 | Lecture with PPT,
Flipped Classroom. | Group
discussion,
Field visit | YouTube
Videos,
Notes, PPT | Conceptual
questions, Peer
discission | | | 2 | Prospects of nursery and landscaping | 2 | | K2, K3 | Collaborative
learning, Blended
learning | Peer teaching,
Discussion | YouTube
Videos,
Notes, PPT | Assignment,
Group
discussion, | | | 3 | Scope of nursery and landscaping | 1 | | K1, K5 | Inquiry-Based Learning, Concept-based discussion | Group
discussion | Online
Tutorials and
Notes | CIA I | | | UNIT: II | (6 Hrs) | | | | | 1 | 1 | | | II | 1 | Methods of Ppropagation — cutting, layering | 1 | 1 | K2, K4 | Lecture with PPT,
YouTube Videos | Concept
Mapping | PPT,
YouTube
Videos,
Notes | Mind map,
Open Book Test | | | 2 | Grafting, budding | 1 | | K2, K3 | Lecture with PPT,
YouTube Videos | Learning by doing | PPT,
YouTube
Videos,
Notes | Flow chart,
Oral Question,
CIA I | | | 3 | Floriculture — Rose cultivation |
1 | | K1, K3 | Lecture with YouTube video, Experiential learning, Participatory learning | Peer learning,
Think-pair-
share | YouTube
Videos,
Notes | Mind map,
CIA II | |-----|-----------|--|---|---|--------|---|---|------------------------------------|---| | | 4 | Chrysanthemum cultivation | 1 | | K1, K3 | Inquiry-Based Learning, Participatory learning | Peer learning,
Video based
learning | YouTube
Videos,
Notes | | | | 5 | Jasmine cultivation | 1 | | K1, K3 | Experiential learning, Participatory learning | Peer learning learning by doing | YouTube
Videos,
Notes | | | III | Unit: III | Gardening—formal garden, informal garden | 2 | 1 | K1, K2 | Inquiry-Based
Learning,
Concept-based
discussion | Field trip | YouTube
Videos,
Notes | Quiz - Google
form | | | 2 | Vegetable garden | 1 | | K2, K3 | Lecture with
YouTube Videos,
Experiential learning | Peer learning,
Think-pair-
share | YouTube
Videos,
Notes | Class test, CIA I
Assignment /
Quiz | | | 3 | Landscape layout designing | 1 | | K3, K4 | Visual and Auditory
Pedagogy | Model Making | E – Notes,
YouTube
videos | | | | 4 | Formation and maintenance of lawn. | 1 | | K3, K5 | Lecture with Model
Design and utilizing
campus gardens | Model Making
and
Presentation | E - Content
as Video and
PPT | | | IV | Unit: IV (6 hrs.) | | | | | | | | | |----|-------------------|-------------------------------------|---|---|--------------|---|----------------------------------|---------------------------------------|--| | | 1 | Nursery structures —
Green house | 2 | 1 | K2,K3 | Lecture with diagrams & models | Group model creation | Ms-PPT,
YouTube
Videos | Class Test CIA
I | | | 2 | Shade house, Mist chamber | 2 | | K2,K4 | PPT | Peer discussion/ Model making | Ms-PPT,
YouTube
Videos | Class Test CIA II Quiz - Google | | | 3 | Topiary, Bonsal culture. | 1 | | K3, K5 | Guided lecture using real-life examples | Demo/
video based
training | Case study
and Class
discussion | form/ Quizizz,
Class notes | | V | Unit: V (6 hrs.) | | | | | | | | | | | 1 | Manures | 1 | 1 | K2, K3 | Conceptual teaching and VK method | Pair work | You tube videos and animations | Class Test CIA
II | | | 2 | Coirposting | 2 | | K3,K4,
K5 | Conceptual teaching and VK method | Field demo
visit | You tube videos and animations | Quiz - Google
form/ Quizizz,
Class notes | | | 3 | Vermicomposting | 2 | | K3,K4,
K5 | Conceptual teaching and VK method | Role play | You tube videos and animations | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Employability / Entrepreneurship /Skill Development): Mind map on "Rose cultivation" Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability **Activities related to Cross Cutting Issues:-** Group discussion on "Ethics in nursery business" **Assignment:** Scope of landscaping #### Sample questions #### Part A $(5 \times 2 = 10 \text{ marks})$ - 1. What is a plant nursery? Mention any two types of plant nurseries. (R; CO-1) - 2. Differentiate between sexual and asexual methods of plant propagation with one example each. (An; CO-4) - 3. List any two distinct characteristics of a formal garden. (U; CO-2) - 4. What is a green house? (K, CO 4) - 5. State any two differences between manure and compost. (U,CO1) # Part B (5 x 4 = 20 marks) - 8. Define landscaping. Explain any two important principles of landscaping with suitable examples. (R; CO-1) - 9. Analyze how grafting contributes to the improvement of plant varieties. Discuss its advantages and limitations. (An; CO-4) - 10. Describe the importance of lawn formation in landscape gardening. (U,CO5) - 11. Analyse the aesthetic importance of bonsai and topiary in landscaping. (An,CO4) - 12. Explain the role of manures in maintaining soil fertility (U, CO1) # Part C (5 \times 9 = 45 marks) - 6. Explain the scope of plant nursery in detail. Discuss its role in agriculture, horticulture, and environmental conservation. (U; CO-2) - 7. Explain how soil type, climate, and propagation methods influence the successful cultivation of jasmine. (Ap; CO-3) - 8. Discuss in detail the planning, layout, and maintenance of a vegetable garden (R; CO-1) - 9. Compare and contrast greenhouse, shade house, and mist chamber in terms of structure, function, and applications in nursery management. (An, CO4) - 10. Evaluate the importance of composting and vermicomposting in sustainable agriculture. Provide examples from organic farming. (Ev,CO1) #### **Head of the Department** **Course Instructor** Dr. Sr. P. Leema Rose Dr. P.T. Arokya Glory, Dr. S. Bhuvaneshwari Class : I B.Sc Botany Title of the Course: Foundation Course: Basics of Botany Semester : I Course Code : BU231FC1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | | | | | |-------------|---|---|---|---|---------|------------------|-------|-----|----------|-------|--|--| | | | | _ | | | 111000 1110 0110 | Hours | CIA | External | Total | | | | BU231FC1 | 2 | _ | _ | _ | 2 | 2 | 30 | 25 | 75 | 100 | | | # **Learning Objectives:** 1. To learn about the classification and Salient features of algae, fungi, bryophytes, Pteridophytes and gymnosperms, viruses and bacteria. 2. To learn about cell biology, Plant Morphology, Genetics, and plant physiology. | COs | Upon completion of this course, students will be able to: | CL | |------|--|---------| | CO-1 | increase the awareness and appreciation of human friendly algae and their economic importance. | K3 (Ap) | | CO-2 | develop an understanding of microbes and fungi
and appreciate their adaptive strategies | K2 (U) | | СО-3 | develop critical understanding on morphology,
anatomy and reproduction of Bryophytes,
Pteridophytes and Gymnosperms. | K2 (U) | | CO-4 | compare the structure and function of cells and | K4 (An) | | | explain the development of cells. | | |------|---|--------| | CO-5 | understand the core concepts and fundamentals of plant biotechnology and genetic engineering. | K2 (U) | # **Total Contact hours: 60 (Including lectures, assignments and tests)** | Unit | Module (Minimum 5 to Maximum 10 modules are permitted) | Topic | Teaching
Hours | Assessment hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/ Evaluation Methods | |------|--|---|-------------------|------------------|--------------------|---------------------------------------|---|---------------------------------|--| | I | | | | | | | Ι | T (-4.4 | T === 1 | | | 1 | Systematics: Two Kingdom and Five Kingdom systems | 1 | 1 | K2 (U) | Inquiry based approach, PPT & Videos | Brainstorming | Notes/Slides
& PPT | Class test,.
Assignments | | | 2 | Salient
features of
various Plant
Groups:
Algae, Fungi, | 3 | | K1 (R) | PPT diagrams, interactive discussions | Group
discussion,
Interaction in
the classroom | YouTube
Video, PPT,
Notes | class test,
formative
assessment,
Oral
questioning,
Recall steps,
Assignments,
MCQ, | | | 3 | Bryophytes,
Pteridophytes | 3 | 1 | K2 (U) | Group
discussion,
diagrams,
videos,
microscope
slides,
interactive
discussions | Brainstorming,
Group work,
PPT | PowerPoint,
Notes, | Multiple-
choice
questions,
short answer
questions,
and essay
questions, | |----|----|---|---|---|--------|---|---|----------------------------|--| | | 4 | Gymnosperms- | 3 | 1 | K2 (U) | Brainstorming,
group
discussion,
PPT, debates | Assignment,
Mind map | Youtube
Videos,
PPT. | MCQ,
True/False,
Short-
Answer
Tests,
Diagrams
and
Labeling, | | II | 5 | Viruses -
Bacteria. | 2 | | K2 (U) | Inquiry based approach, Group discussion | Interaction in the classroom | Youtube
Videos,
PPT. | Recall steps,
MCQ, | | 11 | 7. | Cell as the basic unit of life - Prokaryotic and Eukaryotic Cell (Plant Cell) - | 3 | 1 | K1 (R) | Lecture, Chalk
and board,
diagrams, PPT | Group
discussion,
Brainstorming | Interactive
PPT, notes | Group discussion, class test, summative assessments, | | | 8. | Light Microscope and Electron | 3 | | K2 (U) | Flipped classroom,
Lecture, PPT, | Brainstorming,
Interaction in
the classroom | Interactive PPT, notes | MCQs,
diagram
labelling | | | 9. | Ultra Structure of Prokaryotic and Eukaryotic Cells | 3 | 1 | K2 (U) | diagrams,
chalk and
board, videos Lecture, PPT,
diagrams,
guided group
discussion,
flowcharts | Group
discussion,
peer review | PPT,
YouTube
Videos | short answer questions, Formative assessments, Class test, formative assessment, quiz | |-----|-----|---|---
---|--------|--|---|--|---| | | 10. | Cell Wall -
Cell
Membrane, | 1 | | K1 (R) | Inquiry based approach, Lecture, PPT, interactive discussion, | Brainstorming,
Quiz,
Powerpoint
presentation | Interactive PPT, notes | Class tests,
diagram
labelling,
online
quizzes
Assignments,
True/false
statements, | | III | 11. | Plastids,
Ribosomes. | 2 | 1 | K2 (U) | Lecture, PPT, diagrams, interactive discussions, cooperative learning | Powerpoint presentation, Group discussion | Video,
Interactive
PPT, notes | Short Answer Questions, Essay Questions, Formative assessments, | | 111 | 7. | Structure and
Modification
of Root, Stem | 1 | 1 | K1 (R) | Lecture, PPT, illustrations, Group discussions, using visual images | Team
teaching,
Group
discussion | YouTube
Video,
Interactive
PPT, notes | Short Answer Questions, Diagram Construction Formative | | | | | | | | | | and Summative Assessments, Labelling diagrams, | |-----|---|---|---|--------|---|---|--|---| | 8. | Leaf | 1 | 1 | K2 (U) | Flipped
classroom,
Lecture, PPT,
Charts,
diagrams | Assignments,
Interaction in
the classroom | YouTube
Video,
Interactive
PPT, notes | Class test, Labeling Diagram, formative and summative assessments | | 9. | Structure and
Types of
Inflorescences | 1 | | K1 (R) | Lecture, PPT, diagrams, Group discussion, using visual images | Interactive
PPT, Group
discussion, | Interactive PPT, notes | MCQs,
Diagram
labelling,
essay
question | | 10. | Structure and
Types of
Flowers, | 1 | 1 | K2 (U) | Flipped classroom,
Lecture, PPT, using visual images,
diagram, | Brainstorming,
Mind map, | Video,
Interactive
PPT, notes | Diagram Labeling, Class test, formative assessment, | | 11. | Fruits and Seeds. | 1 | | K1 (R) | Inquiry based approach, Lecture, PPT, videos, comparing with other groups of plants | Group
discussion,
Mind map,
Interactive
PPT | Video,
Interactive
PPT, notes | Assignment,
Class test,
MCQs, | | IV | | | | | | | | | | |----|----|---|---|---|---------|--|---|-------------------------------------|---| | | 6. | Concept of
Heredity and
Variation - | 6 | 1 | K2 (U) | Brainstorming,
lecture, group
discussions,
diagrams | Group
discussion,
peer review | PPT | MCQs,
formative
assessement,
Class tests, | | | 7. | Mendel's
Laws of
Inheritance. | 6 | 2 | K2 (U) | Lecture, chalk
and board,
diagram,
videos | Quiz,
Powerpoint
presentation,
Brainstorming | Interactive PPT, notes | Class test,
MCQs,
formative
assessment,
quizzes | | V | | | | | | | | | | | | 5. | Cell as a
Physiological
Unit | 3 | 1 | K2 (U) | Group discussions, PPT, Brainstorming, lecture, diagrams | Group
discussion,
peer review | PPT | Formative assessement, Class tests, online quiz, | | | 6. | Water relations - Absorption and movement : Diffusion, Osmosis, | 3 | | K2 (U) | Lecture, chalk
and board,
diagram,
videos | Powerpoint presentation, Group discussion | Interactive PPT, notes | Class test,
MCQs,
formative
assessment,
quizzes | | | 7. | Plasmolysis,
Imbibition -
Permeability, | 3 | 1 | K3 (Ap) | Inquiry based approach, Lecture, Chalk and board, PPT, | Powerpoint
presentation,
Brainstorming,
Quiz | Video,
Interactive
PPT, notes | essay
questions,
MCQs, Fill
in the blanks. | | | 8. | Water Potential - Transpiration - | 3 | 1 | K2 (U) | Videos,
flipped
classroom, | Mind map,
Brainstorming | Interactive PPT, notes | MCQs. True or False, | | Movement - | Lecture, chart, | | |-------------|-----------------|--| | Mineral | flow chart, | | | Nutrition . | PPT | | Course Focussing on Employability Employability Activities (Em / En /SD): Seminar, Assignment Course Focusing on Cross Cutting Issues Professional Ethics Assignment: Modification of Root (Last date to submit –10-09-2025) # Sample questions (minimum one question from each unit) | | | | Part A - (2 mai | ·ks) | | |---------------------------|------------------------|--------------------|----------------------------|------------------|---------------------------------| | 13. In the Five Kingdom | classification, f | fungi are placed | l under | . (K1-R, CO-2) | | | a) Monera | b) Protista | c) Fungi | d) Plantae | | | | 14. Which organelle is pr | esent in plant c | ells but absent | in animal cells? (K1 | I-R, CO-2) | | | a) Mitochondria | b) Ribosomes | c) Plastids | d) Nucleus | | | | 15. A stem modified into | a flattened, gre | en structure for | photosynthesis is o | alled | . (K2-U , CO-4) | | a) Tuber | b) Cladode | c) Thorn | d) Bulbil | | | | 4. Which law of Mende | states that two | alleles separat | e during gamete for | mation? (K1-R, C | O-3) | | a) Law of Indo | ependent Assor | tment | b) Law of Segregar | tion | | | c) Law of Dor | ninance | | d) Law of Incompl | ete Dominance | | | 5. The process by which | water moves f | from higher to 1 | ower water potentia | l is called | (K1-R, CO-3) | | a) Diffusion | b) Active tran | sport c) Osm | nosis d) Imbibitio | on | | | | | | Part B - (4 mar | ·ks) | | | 16. Write a short note on | the Five Kingd | lom classification | on system. (K1-R, C | CO-3) | | | 17. Draw and label a plan | nt cell. (K2-U, | C O-4) | | | | | 18. Describe any four typ | es of root mod | ifications with | examples. (K1-R, C | (O-4) | | | 19. Explain Mendel's Lav | w of Dominanc | e with a suitable | e example. (K4-An | , CO-5) | | 20. Define osmosis. How does it differ from diffusion? Mention one example of each in plants.. (K3-Ap, CO-4) #### Part C - (9 marks) - 11. Describe the salient features of Algae and Fungi. (K1-R, CO-1) - 12. Explain the structure and functions of Plastids. (K2-U, CO-4) - 13. Write an account on the morphological structure and modifications of Leaf. (K2-U, CO-4) - 14. Describe Mendel's experiments on monohybrid and dihybrid crosses. (K2-U, CO-5) - 15. Describe the processes of plasmolysis, and imbibition with examples (K1-R, CO-4) Head of the Department Course Instructors Dr. Sr. Leema Rose Dr. Bojaxa A Rosy Dr. Sr. P. Leema Rose Class : II B.Sc Botany Title of the Course : Core course III: Plant Diversity-III Bryophytes and Pteridophytes Semester : III Course Code : BU233CC1 | Course Code | L | Т | P | S | Credits | Inst. Hours Total Marks | | | | | | |-------------|---|---|---|---|------------------|-------------------------|-------|-----|----------|-------|--| | | | _ | | | 01 00 100 | 22300 223 023 | Hours | CIA | External | Total | | | BU233CC1 | 3 | 2 | _ | _ | 5 | 5 | 75 | 25 | 75 | 100 | | ## Learning Objectives: 1. To enable the students to have an overview of non-vascular and vascular cryptogams. 2. To know the evolution, morphological diversity, structure, reproduction and economic importance of Bryophytes and Pteridophytes. | COs | Upon completion of this course, students will be able to: | PSO addressed | CL | |------|---|---------------|-----------------| | CO-1 | decipher the stages of plant evolution and their transition to land habitat. | PSO - 10 | K1 R & K2
U | | СО-2 | recognize morphological variations of Bryophytes and Pteridophytes | PSO - 1 | K2 U & K4
An | | СО-3 | explain and analyze the anatomy and reproduction of Bryophytes and Pteridophytes. | PSO - 3 | K2 U & K4
An | | CO-4 | access and interact about the useful role of | PSO - 6 | K3 Ap | | | Bryophytes and Pteridophytes. | | | |------|--|----------|-------| | CO-5 | compare and contrast the variations in the internal cellular organization, gametophyte and sporophyte of Bryophytes and Pteridophytes. | PSO - 10 | K4 An | Teaching plan Total Contact hours*: 75 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessme
nt hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|----------------|--|-------------------|----------------------|--------------------|---|----------------------------------|------------------------|--| | I | BRYOP
HYTES | | | | | | | | | | | 1 | General characters of bryophytes | 2 | 1 | K1(R) | videos, Group
discussion,
Visual images | PPT,
Brainstormin
g | PowerPoint,
Notes, | Multiple-
choice
questions,
short answer
questions, and
essay
questions, | | | 2 | Evolution of bryophytes | 2 | | K2(U) | Lecture, group discussion, PPT | Mind map,
Group
discussion | PPT. Youtube
Videos | True/False,
class test,
MCQ, | | | 3 | Classification (Watson, 1971, up to family level). | 3 | 2 | K2(U) | Lecture, PPT,
Inquiry based
approach | Interaction in
the classroom | Notes & PPT | Short-Answer
Tests.
Assignments | | | 4 | Economic importance of Bryophytes – | 3 | | K2(U) | Permanent
Slides, | Group discussion, | Video, PPT,
Notes | quizzes, class
test, formative | | | | Ecological importance (Pollution indicators and monitoring), | | | | diagrams,
interactive
discussions | Interaction in the classroom | | assessment,
Recall steps,
Assignments,
MCQ, | |----|---|--|---|---|-------|---|---|------------------------|---| | | 5 | Medicinal uses, horticulture, and industrial uses. | 2 | | K1(R) | Group
discussion,
videos, | Brainstormin
g, Group
work, PPT | PowerPoint,
Notes | Diagrams and
Labeling,
Multiple-
choice
questions,
short answer
questions, and
essay
questions, | | II | 1 | Structure of the following class Hepaticopsida (Marchantia) | 2 | | K2(U) | Flipped
classroom,
Lecture, PPT,
diagrams, chalk
and board,
videos | Brainstormin
g, interaction
in the
classroom | Interactive PPT, notes | MCQ, diagram
labelling, short
answer
questions | | | 2 | Reproduction and life histories of the following class Hepaticopsida (Marchantia); | 2 | 1 | K2(U) | Lecture, PPT,
diagrams, group
discussion | Group
discussion,
peer review | PPT | true/false
statements, or
fill-in-the-
blank
questions,
class test,
formative
assessment | | | 3 | Structure of the following class Anthocerotopsida | 2 | | K1(R) | Lecture, Flipped
classroom, PPT,
diagrams, chalk | Interaction in the classroom, | Interactive PPT | Quiz, Class
Test | | | | (Anthoceros) | | 1 | | and board | Brainstormin g | | | |-----|---|--|---|---|-------|---|---|---|---| | | 4 | Reproduction and life histories of the following class Anthocerotopsida (Anthoceros) | 2 | | K2(U) | Interactive discussion, Inquiry based approach, Lecture and PPT | Brainstormin
g, Quiz,
Powerpoint
presentation | Interactive
PPT, notes | Class tests,
diagram
labelling,
online quizzes
Assignments, | | | 5 | Structure of the following class Bryopsida (Polytrichum) | 2 | 1 | K1(R) | Lecture,
Brainstorming,
Permanent
Slides | Brainstormin
g, Describing
permanent
slide,
diagram | Interactive
PPT, notes | Oral
questioning,
online quiz | | | 6 | Reproduction and life histories of the following class Bryopsida (Polytrichum) | 2 | | K2(U) | Inquiryl based approach, flow chart | Explaining flow chart, Brainstormin g, | Brainstorming, | Flow Chart,
Oral
questioning,
Diagram | | III | 1 | General Characters of
Pteridophytes | 1 | 2 | K2(U) | Inquiry-Based
Learning | Participative Learning - Formulating questions | Live specimen | Understanding check- Exit test | | | 2 | Classification of
Pteridophytes
(Reimer, 1954) | 2 | | K1(R) | Collaborative
Learning | Participative Learning - Group discussions, peer feedback | Interactive
PPT, You Tibe
videos, Live
specimens | Flow chart,
Concept
Mapping | | | 3 | Origin and evolution of Pteridophytes. Stelar Evolution | 3 | | K2(U) | Active Learning | Participative
Learning –
Discussion, | Field visit,
Microscopic
slides | Herbarium
Preparation,
Pteridophyte | | | | | | | | | Brain
storming | | Identification, Slide Identification | |----|---|--|---|---|---------|----------------------------|--|---|---| | | 4 | Types of steles | 2 | | K2(U) | Gamification | Experimental
Learning -
Game-based
experiments | Chart,
Microscopic
slides | Slide
identification
Test, Class test | | | 5 | Economic and Ecological importance of Pteridophytes | 4 | 1 | K3 (Ap) | Experiential Learning, KWL | Experimental Learning - Debate | PPT, Live specimen | Assignment,
Flow chart | | IV | 1 | Morphology, anatomy of the following classes: Psilotopsida (<i>Psilotum</i>) | 3 | 1 | K2(U) | Brain storming,
Lecture | Collaborative learning-
Team Discussions, Charts and Models | Live
Specimen,
Microscopic
slide | Slip test,
Quizzes, Open
Book Test | | | 2 | Reproduction of the following classes: Psilotopsida (Psilotum) | 3 | | K2(U) | Collaborative
Learning | Integrative Teaching - Charts and Visual Images | Interactive
PPT, E-content
with MS Word | Flow chart
analysis, Essay
test | | | 3 | Morphology, anatomy of the following classes: Lycopsida (Selaginella), | 2 | 1 | K2(U) | Brain storming,
Lecture | Inquiry-
Based
Learning,
Lecture with
Visual Aids | Live
Specimen,
Microscopic
slide | Slip test,
Quizzes, Open
Book Test | | | 4 | Reproduction of the following classes: Lycopsida (Selaginella), | 2 | | K2(U) | Collaborative
Learning | Stimulation
based
approach,
Mind Map | Interactive
PPT, E-content
with MS Word | Flow chart
analysis, Essay
test | | | 5 | Heterospory and Seed habit. | 2 | 1 | K4(An) | Experiential
Learning | Reflective
Thinking | You tube
Video | Concept
mapping,
Student led | | | | | | | | | | | presentation | |---|---|---|---|---|-------|---|---|--|---| | V | 1 | Morphology, anatomy of the following classes: Sphenopsida (<i>Equisetum</i>), | 3 | 1 | K2(U) | Brain storming,
Lecture | Inquiry-
Based
Learning,
Lecture with
Visual Aids | Live
Specimen,
Microscopic
slide | Slip test,
Quizzes, Open
Book Test | | | 2 | Reproduction of the following classes:
Sphenopsida (Equisetum), | 3 | | K2(U) | Lecture, PPT, videos, using visual images, brain storming | Group discussion. Interaction in the classroom, | Interactive PPT, E- content with MS Word YouTube Video | Flow chart
analysis, Essay
test | | | 3 | Pteropsida (Marsilea). | 4 | 1 | K2(U) | Brainstorming,
lecture, PPT,
videos,
describing
visual images | Peer
teaching,
Group
discussion, | Interactive
PPT, YouTube
Video, notes | Class test,
Quizzes,
formative
assessment,
Assignment | | | 4 | Apogamy and apospory and homospory | 2 | 1 | K1(R) | Lecture,
diagram, photos,
chalk and board,
videos. | Assignment,
Mind map | Interactive
PPT, notes,
YouTube
Video | Open book
test, Short
test, MCQs, | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training on Pteridophyte identification and sectioning Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Activities related to Cross Cutting Issues: Exhibit of economically important belonging to Pteridophyte and Gymnosperms **Assignment:** Classification of Pteridophyte and Gymnosperms, Life cycle of type specimens - Chart preparation (Last date to submit – 20-07-2025) # Sample questions | | | | Part A | (1 mark |) | | | |------------------------|-----------------|--------------------|--------------------------|-----------------|---------------------------|-------------------------|---------------------| | 1. Which of the | following bryo | phytes is commo | only used as a pollut | tion indic | cator? (K1-R, CO-5) | | | | A) <i>Ma</i> | archantia | B) Poly | vtrichum C) R | iccia | D) Sphagnum | | | | 2. In Anthocero | s, the sporophy | te is distinguishe | ed by the presence of | f | (K1-R, CO-5) | | | | A) Foot and s | seta only | B) Capsule wit | th stomata and chlor | | | | | | C) Elaters | | D) Operculum | | | | | | | 3. Assertion (A): Pte | ridophytes are | considered the fi | irst true land plants t | o posses | s vascular tissues. (K4- | An, CO- 5) | | | Reason (R): | Pteridophytes 1 | nave specialized | tissues, xylem and | phloem, | , which facilitate the tr | ansport of water, miner | rals, and nutrients | | throughout the plant. | | | | | | | | | Options: | | | | | | | | | 1. | Both A and R | are true, and R | is the correct explan | nation of | A. | | | | 2. | Both A and R | are true, but R | is not the correct exp | olanation | of A. | | | | 3. | A is true, but | R is false. | | | | | | | 4. | A is false, bu | t R is true. | | | | | | | 4. Out of the four veg | getative reprod | uction methods of | one doesn't fit into the | he <i>Selag</i> | ginella (K4-An, CO-3) | | | | A) Protonem | a B) Re | esting buds | C) Fragmentation | D) T | ubers | | | | 5. Which of the follo | wing is homos | porous? (K2-U, | CO-3) | | | | | | A) Selaginell | B) Ma | arsilea | C) Equisetum | D) Iso | oetes | | | #### Part B (6 marks) - 1. Write a brief note on the economic importance of bryophytes. (K1-R, CO-4) - 2. Compare the sporophytes of Marchantia and Anthoceros with suitable diagrams. (K3-Ap, CO-5) - 3. Define stelar theory. Illustrate the types of siphonostele and
solenostele. (K4-An, CO-1) - 4. Draw the cross section of a mature sporangim of *Psilotum* and explain. (K4-An, CO-5) - 5. Write a note on apogamy and apospory in pteridophytes with one example each. (K2-U, CO-2) #### Part C (12 marks) - 16. Classify bryophytes based on Watson, 1971. (K1-R, CO-2) - 17. Describe the structure, reproduction, and life cycle of *Polytrichum*. (K2-U, CO-3) - 18. Classify Pteridophytes according to Reimer (1954), with flowchart and examples. (K2-U, CO-2) - 19. Describe the asexual reproduction of *Selaginella* with sketches. (K2-U, CO-3) - 5. Describe the mode of reproduction in Marsilea. (K2-U, CO-3) ## **Head of the Department** **Course Instructor** Dr. Sr. Leema Rose Dr. A. Anami Augustus Arul Dr. Bojaxa A Rosy Class : II B. Sc Botany Title of the Course : Core Lab Course I: Plant Diversity-III Bryophytes and Pteridophytes Semester : III Course Code : BU233CP1 | Course Code | L | T | P | S | Credits | Inst. | Total | N | Jarks | | |-------------|---|---|---|---|---------|-------|-------|-----|--------------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | BU233CP1 | - | - | 3 | - | 2 | 3 | 45 | 25 | 75 | 100 | ## **Learning Objectives:** 1. To enable the students gain expertise in hand sectioning technique. 2. To study diversity of Bryophytes and Pteridophytes and the structure of fossil forms. #### **Course Outcomes** | On the successful completion of the course, students will able to: | | | | | | | | | |--|---|----|--|--|--|--|--|--| | 1. | recognize the major groups of non-vascular and vascular cryptogams | K1 | | | | | | | | 2. | describe the structure of bryophytes and pteridophytes forms prescribed in the syllabus | К2 | | | | | | | | 3. | identify and illustrate the morphological and anatomical features of bryophytes and pteridophytes | К3 | | | | | | | | 4. | develop comprehensive skills in sectioning and micro preparation | K4 | | | | | | | | 5. | interpret the significance of reproductive structures in bryophytes and pteridophytes | K4 | | | | | | | K1–Remember; K2–Understand; K3-Apply; K4-Analyze, K5- Evaluate, K6-Create **Total Contact hours: 45 (Including Practical Classes and Assessments)** | Unit | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|-------------------|---------------------|--------------------|------------------------------|--|---|---| | 1 | Marchantia –Dorsal
view, Ventral view,
T.S. of Thallus
Slides – Marchantia
Antheridiophore,
Archegoniophore,
Sporophyte, Gemma
cup V.S. | 6 | 1 | K1& K2 | Simulation
Based Approach | Experiential Learning: Sectioning and identification | https://www.a
mazon.in/Man
ual-Practical-
Bryophyta-
Suresh-
Kumar/dp/B00
72GNFX4 | Sectioning,
Identification
, Drawing the
specimens | | 2 | Anthoceros:
Slides – Thallus V.S.,
Antheridia V.S.,
sporophyte | 6 | 2 | К3 | Simulation
Based Approach | Experiential Learning: Sectioning and identification | | Sectioning,
Identification
, Drawing the
specimens | | 3 | Polytrichum- habit,
Slides - Leaf T.S.,
Antheridia V.S.,
Sporophyte V.S. | 6 | | К3 | Simulation
Based Approach | Experiential Learning: Sectioning and identification | | Sectioning,
Identification
, Drawing the
specimens | | 4 | Psilotum Habit, T.S.
of stem
Slide- Psilotum T.S.
of synangium | 4 | | К3 | Simulation
Based Approach | Experiential
Learning:
Sectioning
and
identification | https://www.a
mazon.in/Pract
ical-Manual-
Pteridophyta- | Sectioning,
Identification
, Drawing the
specimens | | 5 | Selaginella – Habit,
T.S. of stem, | 6 | 2 | K5&K6 | Simulation
Based Approach | Experiential Learning: | Rajan-
Sundara/dp/81 | Sectioning,
Identification | | | rhizophore
Slide- Selaginella L.S.
of Cone | | | | Sectioning and identification | 26106883 | , Drawing the specimens | |---|---|---|-------|------------------------------|--|----------|---| | 6 | Equisetum – habit,
Slide –T.S. of stem,
rhizome root., L.S. of
cone. | 6 | K5&K6 | Simulation
Based Approach | Experiential Learning: Sectioning and identification | | Sectioning,
Identification
, Drawing the
specimens | | 7 | Marsilea – Habit, T.S.
of Petiole, rhizome
Slide- Sporocarp V.S. | 6 | | Simulation
Based Approach | Experiential Learning: Sectioning and identification | | Sectioning,
Identification
, Drawing the
specimens | | 8 | Botanical excursion. | - | K5&K6 | Experiential
Learning | Experiential Learning: Field visit | - | Submission of field visit | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training on sectioning plant specimen and identification Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): **Environment Sustainability** Environment Sustainability activities related to Cross Cutting Issues: Botanical Excursion ## Sample questions - 1. Make suitable micro preparations of the given specimen. Stain and mount in glycerine. Draw labelled sketches and identify giving reasons. Submit the slides for valuation. - 2. Identify, draw sketches and write notes on the given habit - 3. Identify draw sketches and write notes on the given slides ## **Head of the Department** Dr. Sr. Leema Rose #### **Course Instructor** Dr. A. Anami Augustus Arul Dr. Bojaxa A Rosy Class : II B.Sc. Zoology Title of the Course : ELECTIVE COURSE I: ALLIED BOTANY -I Semester : III Course Code : BU233EC1 | Course Code | т | Т | D | C | Credits | Inst House | Total | | Marks | | |-------------|---|---|---|-------|---------|-------------|-------|-----|----------|-------| | Course Code | L | 1 | r | r 5 | | Inst. Hours | Hours | CIA | External | Total | | BU231EC1 | 3 | 1 | _ | _ | 3 | 4 | 60 | 25 | 75 | 100 | # **Learning Objectives:** 1. To study morphological and anatomical adaptations of plants of various habitats. 2. To demonstrate techniques and experiments in plant tissue culture, plant physiology and biochemistry | COs | Upon completion of this course, students will be able to: | | |-----|---|----| | 1 | increase the awareness and appreciation of human friendlyalgae and their economic | К3 | | 1 | importance. | | | 2 | develop an understanding of microbes and fungi andappreciate their adaptive | K2 | | 2 | strategies | | | | develop critical understanding on morphology, anatomy and reproduction of Bryophytes, | K2 | | 3 | Pteridophytes and | | | | Gymnosperms. | | | 4 | compare the structure and function of cells and explain thedevelopment of cells. | K4 | | 5 | understand the core concepts and fundamentals of plantbiotechnology and genetic | K2 | | 3 | engineering. | | # Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment hours | Cognitiv
e level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--------|---|-------------------|------------------|---------------------|---|---|---|---| | 1 | 1 | General characters of algae | 1 | 2 | K2(U) | Inquiry based Approach - Lecture with visual aid PPT, Conceptual demonstration | Participative Learning - Quiz, Concept Mapping. | Self prepared videos. | Formative Quiz using Google Forms, Written Assignment | | | 2 | Structure, reproduction and life cycle of <i>Anabaena</i> | 2 | | K1(R) | Integrative teaching - Lecture with chalk and talk, photographs | Collaborative Learning – Group Discussion | Interactive photographs and E-content – MS Word | Formative Assessment and Group discussion, | | | 3 | Structure and reproduction of Sargassum | 2 | | K1(R) | Blended Teaching - Lecture with visualization of specimen, Concept-based discussion | Experimental Learning - Hands-On demonstration on sectioning of reproductive organs | Power Point with YouTube videos | Slip test, Group discussion, Diagram evaluation | | | 4 | Life cycle of Sargassum | 2 | | K1(R) | Constructivist
Learning – L:ive | Collaborative
Learning - | YouTube
Videos– | Class test, preparation of | | | | | | 1 | | specimen, Visual images, Gamification | Flow chart, assignment | Animation-
based
concepts, | questions, Memory games | |----|---|---|---|---|---------|---|---|----------------------------------|--| | | 5 | Economic importance of algae. | 2 | | K3 (Ap)
| Flipped
classroom | Participative Learning - Peer Learning | Interactive PPT | Open Book
test, Exhibit
the algal
products | | II | 1 | General characters of fungi, structure, reproduction and life cycle of <i>Penicillium</i> | 2 | | K2 (U) | Integrative teaching - Lecture using Chalk & board | Participative
learning-
Interactive
classroom
games | E- content (MS word) | Simple definitions with Diagrammatic representation | | | 2 | Structure, reproduction and life cycle of <i>Agaricus</i> and economic importance of fungi. | 2 | 1 | K1 (R) | Blended Learning - Lecture using Videos. | Collaborative learning- Hands-On Demonstration , Charts and Models, Field visit | Interactive E-book, PPT | Seminar Presentation, Identification of specimen, Diagram evaluation | | | 3 | Bacteria - general characters, | 1 | | K1 (R) | Integrative teaching - Lecture with chalk and black board | Collaborative
Learning,
Concept | E- content (MS word) | Simple definitions, MCQ, Recall steps | | | 4 | Structure and reproduction of | 2 | | K3 (Ap) | Brainstorming,
Lecture using | Participative learning- | Lecture,
Google | Flow chart, Open book test | | | | Escherichia coli and economic importance of bacteria. | | 2 | | Chalk and board | Interactive classroom games | slides, notes | | |-----|---|--|---|---|---------|---|--|---|--| | | 5 | Virus – general characters, structure of TMV, structure of bacteriophage | 2 | | K3 (Ap) | Inquiry Based
Approach, PPT,
Animated
Videos | Peer Learning | PPT,
YouTube
videos, notes | Chart preparation, CIA | | III | 1 | General characters of Bryophytes, | 1 | | K1 (R) | Integrative teaching - Lecture using Chalk & Board, | Collaborative
Learning | Discussion
forums
Notes/photog
raphs. | Slip test and presentation | | | 2 | Structure and life cycle of Funaria. | 2 | 1 | K2 (U) | Blended
Learning, KWL | Experiential Learning- Demonstration of sectioning | Video lecture, simulation tool, interactive notes, | Conceptual quiz, Group presentation, | | | 3 | General characters of Pteridophytes, | 1 | | K1 (R) | Flipped
Classroom,
Mind Map, | ParticipativeLe arning- Charts and models, | Power Point with graphical representations of general characters. | Written
Assignment,
open book test | | | 4 | Structure and life cycle of <i>Lycopodium</i> . | 2 | 1 | K2 (U) | Integrative teaching- Lecture with | Learning, Peer
Teaching. | You tube
Videos–
Animation- | Preparation of question bank | | | | | | | | Visual Aids such as PPT | | based concepts, | by students | |----|---|---|---|---|---------|--|---|--|--------------------------------------| | | 5 | General characters of Gymnosperms, Structure and life cycle of <i>Cycas</i> . | 3 | 1 | K1 (R) | Lecture using charts, posters and photographs | Using visual images and models. | Online
Tutorials and
Notes | Open Book
Exam | | IV | 1 | Prokaryotic and Eukaryotic cell- structure and organization | 1 | 1 | K4 (An) | Integrative
teaching-
Lecture, PPT,
Permanent
Slides | Collaboratite
learning- Panel
Discussions | Self prepared videos, interactive PPT. | Slip test | | | 2 | Ultra structure and function of chloroplast, | 2 | | K4 (An) | Inquiry based approach Lecture with illustration | Participative learning- Interactive classroom games | Video
Lecture,
Interactive
Notes, | Assignments and seminar presentation | | | 3 | Ultra structure and function of mitochondria | 2 | 1 | K4 (An) | Inquiry based approach-
Lecture with illustration | Concept
mapping | Iinteractive E
book | Assignments and seminar presentation | | | 4 | Ultra structure and function of nucleus | 2 | 1 | K4 (An) | Flipped classroom-chalk and talk Lecture method, | Participative Learning- Charts and models, | Self prepared videos, interactive | Assignments and seminar presentation | | | | | | | | models. | Demonstrative approach | PPT. | | |---|---|---|---|---|---------|--|--|---|--------------------------------------| | | 5 | Cell division - mitosis and meiosis | 2 | 1 | K4 (An) | Reflective Thinking- Lecture, PPT, permanent slide, plant specimen | Experimential Learning- Demonstration of mitosis meiosis | Self prepared videos, interactive PPT. | Assignments and seminar presentation | | V | 1 | Mendelism - Law of dominance, Law of segregation, Incompletedominance. Law of independent assortment. | 2 | 1 | K4 (An) | Integrative teaching-
Lecture using Chalk & Board | Collaborative Learning, Concept Mapping | Online
Tutorials and
Notes: | Open book test | | | 2 | Monohybrid and
dihybrid | 2 | 1 | K4 (An) | Reflective Thinking - Lecture using Chalk and board, posters. | Experimental Learning- Analyze problem solution | Interactive E content | Album preparation | | | 3 | Cross - Test cross - Back cross. | 1 | | K4 (An) | Integrative teaching-
Lecture with Concept-based discussion. | Collaborative
Learning, -
Memory game | PowerPoint
and You tube
videos, Video
Lectures,
Simulations,
Notes/Slides. | Written
Assignment | | | 4 | Plant tissue culture - In vitro culture methods. | 2 | 2 | K3 (Ap) | Lecture with
Visual Aids
such as PPT,
photographs | Experiential Learning- Demonstration of plant tissue | You tube
Videos—
Animation-
based
concepts | Formative Quiz using Google Forms, | | | | | | | culture | | | |---|------------------------|---|---------|-----------------|--------------|---------------|---------------| | 5 | Plant tissue culture | 2 | K3 (Ap) | Integrative | Experiential | Online | Slip test and | | | and its application in | | | teaching- | Learning- | Tutorials and | CIA | | | biotechnology. | | | Lecture using | Exposure to | Notes | | | | | | | chalk and board | lecture by | | | | | | | | | experts | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em / En /SD): Seminar presentation and assignments Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:- **Preparation of herbarium (algae).** #### Sample questions Part A (1 mark) | 8 | a) Fungi | b) Ferns | c) Azolla | d) Algae | |---|----------|----------|-----------|----------| - 2. Assertion (A): Penicillin production by Penicillium illustrates amensalism (**K2-U**, **CO-2**) Reason (R): The fungus remains unaffected by penicillin, which kills nearby bacteria. - a) A & R are true, and R explains A 21. Anabaena is often found in symbiotic association with: (K3-Ap, CO-1) - b) A & R are true, but R does not explain A - c) A is true, R is false - d) A & R are false | 3, Which plant has the largest sperm cells in the plant kingdom (K2-U , | CO-3) | |---|--| | a) Pinus | | | b) Mango
c) Sunflower | | | d) Cycas. | | | a) E) Cust. | | | 4. Meiosis converts a diploid germ cell (2n) into four genetically unique 5. Who is the father of genetics (K1-R, CO-5) | haploid gamete True or False (K4-An, CO-4) | | Part B (6 ma | arks) | | | | | 1. Construct the general characters of algae. (K3-Ap, CO-1) | | | 22. Discuss the structure of bacteriophage (K2-U, CO-2) | | | 23. Describe the general characters of bryophytes. (K2-U, CO-3) | | | 24. Compare Prokaryotic and Eukaryotic cell. (K4-An, CO-4) | | | 25. Tabulate monohybrid cross. (K1-R, CO-5) | | | Part C | (9 marks) | | 1. interpret the structure and reproduction in Sargassum, highlighting its 2.Describe the structure and general characters, structure of TMV (K2- U | , , , | | 3. Summarize lifecycle of lycopodium. (K2-U, CO-3) | , (0-2) | | 4.Categorize the functions of mitochondria (K4-An, CO-4) | | | 5.Demonstrate Plant tissue culture. (K1-R, CO-5) | | | Head of the Department | Course Instructor | | Dr. Sr. Leema Rose | Dr. A.R. Florance | | | Dr. J. Albino Wins | Class : II B.Sc. Zoology Title of the Course : ELECTIVE LAB COURSE III: ALLIED BOTANY PRACTICAL Course Code : BU233EP1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | BU233EP1 | - | - | 2 | _ | 2 | 2 | 30 | 25 | 75 | 100 | ## **Learning Outcomes:** 1. To enhance information on the identification of each taxonomical group by developing the skill-based detection of the morphology and microstructure of microorganisms, algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms. 2. To understand the laws of inheritance, genetic basis of loci and alleles. | COs | Upon completion of this course, students will be able to: | | |-----|--|---------------| | 1 | to study the internal organization of algae and fungi. | K1 (R) | | 2 | develop critical
understanding on morphology, anatomy and reproduction of Bryophytes, Pteridophytes and Gymnosperms. | K2 (U) | | 3 | understand the fundamental concepts of plant anatomy and embryology | K2(U) | | 4 | to analyze the classical taxonomy with reference to different parameters. | K3(Ap) | | 5 | to compare the effect of various physical factors on photosynthesis. | K4(An) | # **Total Contact hours: 30 (Including lectures, assignments and tests)** | Unit | Торіс | Teaching
Hours | Assessme
nt Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|-------------------|----------------------|--------------------|---|---|----------------------------|--| | 1. | Make suitable micro preparation of Anabaena | 2 | 1 | K4(An) | Reflective
Thinking,
lecture method | Experimental learning - Demonstratio n of experiments | O Lab | Evaluation of slides, observation notes and diagrams | | 2. | Make suitable micro preparation of Sargassum - Stipe, Leaf | 1 | | K4(An) | Flipped
Classroom,
Stimulation
based approach | Experiential Learning - Using live specimen | Google
Classroom | Evaluation of slides, observation notes and diagrams | | 3. | Make suitable micro preparation of Penicillium | 1 | 1 | K4(An) | Reflective
Thinking,
Lecture with
illustration | Experiential Learning - Using live specimen, Preparing slides | E content - external Links | Evaluation of slides, observation notes and diagrams | | 4. | Make suitable micro preparation of Agaricus | 2 | | K4(An) | Integrative Teaching, Simulation Based Approach | Experiential
Learning-
Hands-On
Demonstrati
on | Youtube
Videos | Evaluation of slides, observation notes and diagrams | | 5. | Structure of Bacteria | 1 | | K4(An) | Inquiry based approach | Experiential Learning- Slide Preparation, Live specimen | Youtube
Videos | Evaluation of slides, Observation notes and diagrams | |----|---|---|---|--------|-------------------------|--|-------------------------|--| | 6. | Make suitable micro preparation of Funaria – Stem | 2 | 1 | K2(U) | Reflective approach | Experiential
Learning-
Observation
of Permanent
Slides | Self Prepared
Videos | Homework -
Diagrams,
Evaluation of
slides | | 7. | Make suitable micro preparation of Funaria – Archegonial cluster, Antheridial cluster, Sporophyte L.S | 2 | | K2(U) | Integrative approach | Experiential
Learning-
Observation
of Permanent
Slides | Youtube
Videos | Homework -
Diagrams,
Evaluation of
slides | | 8. | Make suitable micro preparation of
<i>Lycopodium</i> –
Stem, Cone | 2 | | K2(U) | Integrative approach | Experiential
Learning-
Observation
of Permanent
Slides | Youtube
Videos | Homework -
Diagrams,
Evaluation of
slides | | 9. | Make suitable micro preparation of | 2 | 1 | K2(U) | Reflective
Thinking, | Experiential Learning- | Interactive PPT | Evaluation of slides, | | | Cycas – Leaflet, T.S Microsporophyll, T.S. of Megasporophyll, Ovule L.S | | | | Flipped
Classroom | Observation
of Permanent
Slides | | Diagram
Correction | |-----|--|---|---|-------|--|--|-------------------------|--| | 10. | Micro photographs of the cell organelles ultra structure – Chloroplast, Mitochondria, Nucleus, | 2 | | K2(U) | KWL, Hands on
Training
sessions. | Experiential
Learning-
Observation
of Permanent
Slides | Youtube
Videos | Evaluation of slides, Diagram Correction | | 11. | Micro photographs of
the cell organelles
ultra structure –
Mitosis and Meiosis | 2 | | K2(U) | Lectures with
Illustration,
Brain Storming | Experiential
Learning-
Observation
of Permanent
Slides | Econtent with GAMMA PPT | Evaluation of slides, Diagram Correction | | 12. | Simple Genetics
Problem -
Monohybrid Cross | 2 | 1 | K2(U) | Problem Solving - Lecture with illustrations | Experiential Learning- Solving genetics problem, Puzzles | O lab | Evaluation of genetics problem | | 13. | Simple Genetics
Problem - Dihybrid
Cross | 2 | K2(U) | Problem Solving - Lecture with illustrations | Experiential Learning- Solving genetics problem, Puzzles | O Lab | Evaluation of genetics problem | |-----|---|---|--------|--|--|-------------------------|--------------------------------| | 14. | Simple Genetics
Problem - Gene
Interaction | 1 | K4(An) | Problem Solving - Lecture with illustrations | Experiential Learning- Solving genetics problem, Puzzles | O-Lab | Evaluation of genetics problem | | 15. | Biotechnology Spotters - Hot Air Oven and Laminar Air | 1 | K1(R) | Demonstrative approach | Participative learning-
Exhit of spotters | Interactive
PPT | Evaluation of diagrams | | 16. | Biotechnology Spotters - Flow Chamber and Autoclave | 2 | K1(R) | Reflective
Thinking,
Inquiry Based
Approach | Participative
learning-
Exhit of
spotters | Econtent with GAMMA PPT | Evaluation of diagrams | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em / En /SD): Hands on Training on Slide Preparation, Sectioning, mounting, Microscopic Analysis Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Activities related to Cross Cutting Issues: Exhibit of Algae ## **Sample Questions** - 1. Make a suitable micro preparation of given specimen.. Identify, giving reasons, draw diagrams and submit the prepared slide for valuation. $(2 \times 12 = 24)$ - 2. Solve the monohybrid genetic problems $(1 \times 5 = 5)$ - 3. Solve the dihybrid genetic problems $(1 \times 10 = 10)$ - 4. Identify, draw and write notes of the specimen. (6 \times 6 = 36) **Head of the Department** **Course Instructor** Dr.Sr.P.Leema Rose Dr.J.Albino Wins & Dr.A.R.Florence Class : II B.Sc. Botany Title of the Course : SKILL ENHANCEMENT COURSE - SEC II ENTREPRENEURIAL OPPORTUNITIES IN BOTANY Semester : III Course Code : BU233SE1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | Marks | | | |-------------|---|---|---|---|---------|-------------|-------|-------|----------|-------| | | | | | | | | Hours | CIA | External | Total | | BU233SE1 | 2 | - | - | - | 2 | 2 | 30 | 25 | 75 | 100 | ## **Learning Objectives:** - 1. To foster student's comprehension of entrepreneurial opportunities within Botany, including ventures utilizing medicinal plants, biotechniques, and marketing bioproducts. - 2. To cultivate a mindset among students to initiate their own ventures as a means of income generation and professional empowerment. | COs | Upon completion of this course, students will be able to: | | | | | | | | |-----|--|----|--|--|--|--|--|--| | 1 | explain the concept of entrepreneurial opportunities in Botany. | K1 | | | | | | | | 2 | relate to how various fields of botany could be understood with an entrepreneurial approach. | K2 | | | | | | | | 3 | make use of the knowledge gained to start new venture with the help of government agencies | К3 | | | | | | | | 4 | decipher effective ways of making vale added products from coconut, banana, and jack fruit | K4 | | | | | | | | 5 | develop strategies to cultivate algae and ornamental plants | K5 | | | | | | | Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Module (Minimu m 5 to Maximu m 10 modules are permitte d) | Торіс | Teaching
Hours | Assessme
nt hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|---|---|-------------------|----------------------|--------------------|---|--|---|-----------------------------------| | 1 | 1 | Introduction to entrepreneurship- scope | 1 | 1 | K3 (Ap) | Inquiry-Based
Learning,
Lecture with
Visual Aids | Quiz,
Concept
Mapping. | Video
Lectures,
Simulations,
Notes/Slides. | Formative Quiz using Google Forms | | | 2 | Identification of new ventures using plant resources | 1 | | K3 (Ap) | Flipped
Classroom,
Mind Map,
Stimulation
based approach | Problem solving methodologie s- group discussion | Interactive E content - Word | Written
Assignment | | | 3 | General concept about
the Govt. formalities,
rules & regulation | 1 | | K3(Ap) | Reflective Thinking, Lecture with illustration | Participative Learning- Debate, Role play | E content (word and ppt) | group
discussion | | | 4 | Role of funding agencies – NABARD, | 1 | | K3(Ap) | Integrative Teaching, | Collaborative
Learning - | Conceptual clarity in | Evaluate by short notes, | | | | | | | | Simulation | Case Study | funding | slip test | |----|---|-----------------------|---
---|---------|-----------------|---------------|------------------|-----------------| | | | | | | | Based Approach | Analysis of | agencies | | | | | | | | | | NABARD | | | | | 5 | Rural Banking and | 1 | | K3 (Ap) | Reflective | Participative | Online | Home work | | | | DIC | | | | Thinking, | learning- | Tutorials and | | | | | | | | | Lecture using | Brain | Notes | | | | | | | | | PPT, Chalk and | Storming, | | | | | | | | | | board | Assignment | | | | II | 1 | Value Addition of | 1 | 1 | K4 (An) | Cooperative | Experimental | Video Lecture, | Problem- | | | | Coconut: Production | | | | learning - | learning- | Interactive E | Solving | | | | and value addition in | | | | Lecture with | preparation | content | Assignments, | | | | Coconut; Coconut | | | | Power point | of products | | Open Book | | | | honey | | | | preparation | from coconut | | Exam | | | 2 | White meat | 1 | | K4 (An) | Conceptual | Experimental | Self prepared | Album | | | | | | | | Demonstration | learning - | videos, | preparation | | | | | | | | | Collaborative | interactive ppt. | | | | | | | | | | Learning | | | | | 3 | Desiccated coconut, | 1 | | K4 (An) | Brainstorming- | Experimental | You tube | Team Work | | | | Coconut flour | | | | Lecture with | learning - | videos | Analysis and | | | | | | | | board and chalk | Preparation | | Interpretation, | | | | | | | | | of coconut | | Slip Test. | | | | | | | | | products | | | | | 4 | Coconut milk, | 1 | | K4 (An) | Blended | Experimental | Video Lecture, | Panel | | | | Coconut chips | | | | learning- | learning - | Interactive | discussion | | | | | | | | Performance | Hand on | Notes. | | | | | | | | | based learning | demonstratio | | | | | | | | | | | n (coconut | | | | | | | | | | | chips) | | | | | 5 | Value added products
from Coconut Shell | 1 | | K4 (An) | Lecture method- Lecture with board and chalk | Experimental learning - Hands on training on Products from coconut shell preparation | Self prepared videos, interactive ppt. | Formative Quiz using Google Forms, CIA | |-----|---|---|---|---|---------|---|--|--|--| | III | 1 | Value Addition of Banana: Production and value addition in Banana; Banana flour | 1 | 1 | K4 (An) | Integrative Teaching, - Lecture, PPT, | Collaborative Learning- Panel Discussions | Self prepared videos, interactive ppt. | Flow chart
analysis,
Quizes | | | 2 | Banana puree | 1 | | K4 (An) | Constructivist Learning – Board and chalk method | Experimental learning - Demonstratin g for the preparation of Banana puree | Video Lecture,
Interactive E
content | Seminar presentation and assignments. | | | 3 | Banana RTS Juice | 1 | | K4 (An) | Integrative Teaching,- Lecture with board and chalk | Experimental learning - Banana RTS Juice preparation | You tube
videos of
preparation
based concepts | Team Work
Analysis and
Interpretation,
Slip Test. | | | 4 | Banana Wine | 1 | | K4 (An) | Performance based learning | Experimental learning - | E-content with MS | Slip Test, Oral
Presentation, | | | | | | | | using PPT | Hand on
demonstratio
n (Banana
Wine) | Powerpoint | MCQs. | |----|---|--|---|---|---------|--|--|---|---| | | 5 | Banana biscuits, and
Banana fibre | 1 | | K4 (An) | Integrative Teaching, - Lecture with board and chalk | Experimental learning - Product preparation from banana | Self prepared videos, interactive ppt. | Open book
test, Question-
Answer
Session | | IV | 1 | Value Addition of Jackfruit: Production and value addition of Jack fruit; Dried jack | 1 | 1 | K4 (An) | Inquiry-Based Learning, Lecture with Visual Aids and PPT | Collaborative
Learning | Self prepared videos, interactive ppt. | Quizzes, Just a
Minute, Flow
Chart Analysis | | | 2 | Jack rind pickle | 1 | | K4 (An) | Flipped
Classroom,
Stimulation
based approach | Experimental learning - Demonstratin g of jack rind pickle preparation | Video Lecture,
Interactive
Notes | Slip Test, Oral
Presentation,
MCQs. | | | 3 | Jack fruit halwa | 1 | | K4 (An) | Reflective Thinking, Lecture with PPT | Experimental learning - Jack fruit halwa preparation | E-content with
MS Word,
Google
Classroom | Formative Quiz using Google Forms, | | | 4 | Jack fruit toffee | 1 | | K4 (An) | Integrative Teaching, | Experimental learning - | Video Lecture,
Interactive | Team Work
Analysis and | | | | | | | | Simulation
Based Approach | Hand on
demonstratio
n (Jack fruit
toffee) | Notes. | Interpretation,
Slip Test. | |---|---|--|---|---|---------|--|--|--|---| | | 5 | Jack chips | 1 | | K4 (An) | Inquiry-Based teaching, Lecture with Board and clalk | Experimental learning - Presentation of jack chips | Lecture,
Interactive E
content (MS
Word). | Slip test | | V | 1 | Spirulina cultivation | 1 | 1 | K5(E) | conceptual Demonstration Lecture with visual Aids such as PPT, | Experimental learning - Concept Mapping. | Self prepared videos. | Formative Quiz using Google Forms, Written Assignment | | | 2 | Azolla cultivation | 1 | | K5(E) | Lecture with chalk and talk, photographs | Experimental learning - Hands-On demonstratio n on Azolla cultivation | Interactive photographs and Notes | Formative Assessment and Group discussion, | | | 3 | Elite and ornamental plants in vitro propagation | 1 | | K5(E) | Concept-based discussion | Experimental learning - Hands-On demonstratio n of invitro propogation | Power Point
with YouTube
videos | Slip test,
Group
discussion | | | 4 | Selection of superior biotypes of orchids | 1 | | K5(E) | Constructivist
Learning- | Collaborative Learning, - | PowerPoint and You tube | Class test,
preparation of | | | | | | Lecture with chalk and talk | Memory
game | videos, Video
Lectures,
Simulations,
Notes/Slides. | question bank | |---|-----------------------|---|-------|-----------------------------|----------------|---|---------------| | 5 | Selection of superior | 1 | K5(E) | Lecture using | Peer | Interactive ppt | Open Book | | | biotypes of | | | PPT, Chalk and | Learning, | | Test, CIA | | | Syngonium. | | | board | DIY Activity, | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): preparation of value addition products from banana Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Professional** Ethics ## Sample questions Part A (2 marks) - 1. What does NABARD stand for? (K3-Ap, CO-1) - 2. Name one edible value-added product made from coconut meat (K4-An, CO-2) - 3. Name the liquid banana product used in beverages. (K4-An, CO-3) - 4. What part of jackfruit is used to prepare pickle? (K4-An, CO-4) - 5. Name one aquatic fern used as green manure (K5-E, CO-5) ### Part B (4 marks) - 26. Discuss the scope of entrepreneurship in rural areas with examples of ventures using plant resources. (K1-R, CO-1) - 27. Describe the process of making desiccated coconut. (K4-An, CO-2) - 28. Describe the process of making Ready-To-Serve (RTS) banana juice.. (K4-An, CO-3) - 29. What is dried jack and how is it prepared? (K4-An, CO-4) - 30. Explain the in vitro propagation method for orchids. (K5-E, CO-5) ### Part C (9 marks) - 20. Explain in detail the government formalities, rules, and regulations to be followed before starting a new enterprise.. (K3-Ap, CO-1) - 21. Analyze the economic and nutritional advantages of value-added coconut products in rural entrepreneurship. (K4-An, CO-2) - 22. Describe the value addition process of banana and its importance in rural entrepreneurship.. (K4-An, CO-3) - 23. Explain the methods of preparation, preservation, and market potential of jackfruit halwa, toffee, and chips. (K4-An, CO-4) - 24. Explain in detail the cultivation techniques, nutritional value, and commercial importance of Azolla. (K5-E, CO-5) **Head of the Department** **Course Instructor** Dr. Sr. Leema Rose Dr. A.R. Florance Class : III B.Sc., Botany Title of the Course : Core Course V: Plant Morphology, Taxonomy and Economic Botany Semester : V Course Code : BU235CC1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | | | | |-------------|---|---|---|---|---------|------------------|-------|-----|----------|-------|--| | | | | | | 010010 | 2.11000 2.200.20 | Hours | CIA | External | Total | | | PU233CC2 | 4 | 1 | _ | _ | 4 | 5 | 75 | 25 | 75 | 100 | | # **Learning Objectives:** - 1. To impart knowledge on the vegetative and floral morphology of flowering plants and familiarize students with plant classification systems. - 2. To enable students to identify key floral characteristics of selected plant families and understand their economic significance. | COs | Upon completion of this course, students will be able to: | | |-----|---|--------------| | 1 |
recall the morphological features of vegetative and floral structures in flowering plants, including modifications of roots, stems, leaves, inflorescences, and fruits. | K1(R) | | 2 | explain the principles of different angiosperm classification systems, botanical nomenclature, and herbarium techniques for plant identification and preservation. | K2(U) | | 3 | identify and differentiate selected plant families based on the different system of classification and recognize their key morphological characteristics. | K3(Ap) | | 4 | analyze the distinguishing floral features of selected plant families and their taxonomic significance in classification. | K4(An) | | 5 | assess the economic importance of plants from the prescribed families concerning their role in food, medicine, timber, dyes, and other commercial uses. | K5(E) | Teaching plan Total Contact hours*: 75 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessme
nt hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--------|--|-------------------|----------------------|--------------------|---------------------------|--|--------------------|---| | Ι | | | | | | • | | - | • | | | 1 | Introduction to systematic: Botanical nomenclature | 1 | 1 | K2(U) | Inquiry-Based
Learning | Experimental Learning - simulations | | Slip test | | | 2 | Principles and rules of International Code of Nomenclature (ICN); Ranks and names; Typification, author citation, valid publication, rejection of names, principle of priority and its limitations. formula. | 2 | | K2(U) | Lecturing | Participative Learning - Think-pair- share | Interactive
PPT | Conceptual
Quiz, Group
Presentation | | | 3 | Morphology of root, stem and leaves. | 3 | 1 | K1(R) | Active Learning | Experiential Learning – Teaching with live specimens | Live specimen | Identification
of specimens,
Quizzes, Open
book test,
MCQ | | | 4 | Inflorescences—
racemose, cymose, and
special types. | 3 | | K1(R) | Active Learning | Experiential Learning – Teaching | Live specimen | Identification of specimens, Quizzes, Open | | | 5 | Fruit – types, floral diagram and floral | 3 | 1 | K1(R) | Active Learning | with live specimens Experiential Learning – Teaching with live | Live specimen | book test, MCQ Identification of specimens, Quizzes, Open book test, | |----|---|---|---|---|--------|--------------------------|--|---|--| | II | 1 | Systems of Angiosperm classification – Detailed study on Sexual system-Carolus Linnaeus, | 3 | 1 | K3(Ap) | Gamification | specimens Experiential Learning – Game-based scenarios, simulations | E-content with
MS Word,
Video display | MCQ Flow Chart Analysis, Group Discussion, Memory game | | | 2 | Natural System – Bentham and Hooker, Phylogenetic System - APG Classification (2016). | 3 | | K3(Ap) | Gamification | Experiential Learning – Game-based scenarios, simulations | E-content with
MS Word,
Video display | Flow Chart
Analysis,
Group
Discussion,
Memory game | | | 3 | Herbarium technique—
collection, pressing,
drying, mounting and
preservation of plant
specimens | 2 | 1 | K2(U) | Experiential
Learning | Experimental Learning – Field visit, Hand on training | E-content with
MS Word,
Video display | Flow Chart
Analysis,
Group
Discussion,
Memory game | | | 4 | Virtual herbarium | 2 | 1 | K2(U) | Lecture | Participative Learning – Concept explanation | E-content with
MS Word,
Video display | Flow Chart Analysis, Group Discussion, Memory game | | | 5 | Taxonomic literature:
Floras, monographs,
revisions, journals and
Hortus malabarica | 2 | | K2(U) | Flipped
Classroom | Experimental
Learning –
Q&A with
instructor | E-content with
MS Word,
Video display | Flow Chart
Analysis,
Group
Discussion,
Memory game | |-----|---|---|---|---|--------|---------------------------|--|---|--| | III | 1 | Study of the following families based on the natural system and their economic importance: Annonaceae | 2 | 1 | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | https://books.g
oogle.co.in/bo
oks/about/PLA
NT_TAXONO
MY_2E.html?i
d=Roi
0lwSXFnUC&
redir_esc=y | Peer review,
Learning
circles
assessment | | | 2 | Study of the following families based on the natural system and their economic importance: Nymphaeaceae | 2 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | | 3 | Study of the following families based on the natural system and their economic importance: | 1 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, | PPT, Live
specimen,
Exhibition | Peer review,
Learning
circles
assessment | | | Rutaceae | | | | | activities
involving
pairs and
small groups | | | |---|--|---|---|--------|---------------------------|--|--------------------------------------|---| | 4 | Study of the following families based on the natural system and their economic importance: Caesalpinaceae, | 1 | 1 | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | 5 | Study of the following families based on the natural system and their economic importance: Anacardiaceae | 1 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | 6 | Study of the following families based on the natural system and their economic importance: Cucurbitaceae. | 1 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities | PPT, Live
specimen,
Exhibition | Peer review,
Learning
circles
assessment | | | 7 | Study of the following families based on the natural system and their economic importance: Apocynaceae. | 2 | 1 | K4(An) | Collaborative
Learning | involving pairs and small groups Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | |----|---|--|---|---|--------|---------------------------|--|---|---| | | 8 | Study of the following families based on the natural system and their economic importance: Asclepiadaceae. | 2 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | IV | 1 | Study of the following families based on the natural system and their economic importance: Convolvulaceae. | 2 | 1 | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving | https://books.g
oogle.co.in/bo
oks/about/PLA
NT_TAXONO
MY_2E.html?i
d=Roi
0lwSXFnUC&
redir_esc=y | Peer review,
Learning
circles
assessment | | 2 | Study of the following families based on the natural system and their economic importance: Acanthaceae. | 1 | | K4(An) | Collaborative
Learning | pairs and small groups Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live
specimen,
Exhibition | Peer review,
Learning
circles
assessment | |---|---|---|---|--------|---------------------------|--|--------------------------------------|---| | 3 | Study of the following families based on the natural system and their
economic importance: Lamiaceae. | 2 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | 4 | Study of the following families based on the natural system and their economic importance: Euphorbiaceae. | 2 | 1 | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and | PPT, Live
specimen,
Exhibition | Peer review,
Learning
circles
assessment | | | | | | | | small groups | | | |---|--|---|---|--------|---------------------------|--|--------------------------------------|---| | 5 | Study of the following families based on the natural system and their economic importance: Amaranthaceae | 1 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | 6 | Study of the following families based on the natural system and their economic importance: Liliaceae. | 1 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | | 7 | Study of the following families based on the natural system and their economic importance Arecaceae | 1 | 1 | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live
specimen,
Exhibition | Peer review,
Learning
circles
assessment | | | 8 | Study of the following families based on the natural system and their economic importance: Poaceae | 2 | | K4(An) | Collaborative
Learning | Participative Learning – Group discussions, peer feedback, activities involving pairs and small groups | PPT, Live specimen, Exhibition | Peer review,
Learning
circles
assessment | |---|---|--|---|---|--------|---------------------------|--|--|---| | V | 1 | Study of the following groups of plants with special reference to their botanical name, family, morphology of useful part, economic products and uses: Cereals - Paddy, Wheat. | 2 | 1 | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning - discussion of experiences | https://books.g
oogle.co.in/bo
oks/about/Eco
nomic_Botany.
html?id=2ahsD
QAA
QBAJ&redir_e
sc=y 5. | Field report,
Report of
discussion | | | 2 | Study of the following groups of plants with special reference to their botanical name, family, morphology of useful part, economic products and uses: Pulses - Green gram and Bengal gram | 2 | | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning - discussion of experiences | https://books.g
oogle.co.in/bo
oks/about/Eco
nomic_Botany.
html?id=2ahsD
QAA
QBAJ&redir_e
sc=y 5. | Field report,
Report of
discussion | | 3 | Study of the following groups of plants with special reference to their botanical name, family, morphology of useful part, economic products and uses: Tuber crops -Tapioca and Potato. | 2 | | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning - discussion of experiences | https://books.g
oogle.co.in/bo
oks/about/Eco
nomic_Botany.
html?id=2ahsD
QAA
QBAJ&redir_e
sc=y 5. | Field report,
Report of
discussion | |---|--|---|---|-------|--------------------------|---|--|--| | 4 | Study of the following groups of plants with special reference to their botanical name, family, morphology of useful part, economic products and uses: Spices – Pepper and Cardamom. | 1 | 1 | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning - discussion of experiences | Interactive
PPT, Live
specimen | Field report,
Report of
discussion | | 5 | Study of the following groups of plants with special reference to their botanical name, family, morphology of useful part, economic products and uses: Beverages – Tea and Coffee. | 1 | | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning – discussion of experiences | Interactive
PPT, Live
specimen | Field report,
Report of
discussion | | 6 | Study of the following groups of plants with special reference to | 1 | | K5(E) | Experiential
Learning | Experimental
Learning -
Field trips, | Interactive
PPT, Live
specimen | Field report,
Report of
discussion | | far
use
pro
yie
Co | eir botanical name, mily, morphology of eful part, economic oducts and uses: Oil elding plants – oconut and roundnut. | | | | | simulations Participative Learning – discussion of experiences | | | |--|---|---|---|-------|--------------------------|---|--------------------------------------|--| | gro
spo
the
far
uso
pro
File
Co | oudy of the following oups of plants with ecial reference to eir botanical name, mily, morphology of eful part, economic oducts and uses: bre yielding plants - otton, Coir; Timber elding plants - Teak, ose wood; | 1 | 1 | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning - discussion of experiences | Interactive
PPT, Live
specimen | Field report,
Report of
discussion | | gro
spo
the
far
uso
pro
La
Pa | cudy of the following oups of plants with ecial reference to eir botanical name, mily, morphology of eful part, economic oducts and uses: atex yielding plants - ara rubber and upota; | 1 | | K5(E) | Experiential
Learning | Experimental Learning - Field trips, simulations Participative Learning - discussion of experiences | Interactive
PPT, Live
specimen | Field report,
Report of
discussion | | 9 Str
gro | oups of plants with ecial reference to | 1 | | K5(E) | Experiential
Learning | Experimental
Learning -
Field trips, | Interactive PPT, Live specimen | Field report,
Report of
discussion | | their botanical name, | | simulations | | |-----------------------|--|---------------|--| | family, morphology of | | Participative | | | useful part, economic | | Learning – | | | products and uses: | | discussion of | | | Ornamental plants - | | experiences | | | Rose, Orchids. | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (Em / En /SD):Herbarium Preparation Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Activities related to Cross Cutting Issues: Exhibition of economic important plants/Herbarium preparation Assignment: Morphological and floral characters of families prescribed in the syllabus #### **Sample Questions** Part A (1 mark) - 1. The flat, expanded part of a leaf is known as the: (K2-U, CO-1) - a. Petiole - b. Blade - c. Midrib - d. Vein - 2. Which of the following is a commonly used method for drying plant specimens in a herbarium? (K4-An, CO-2) - a. Pressing between heavy books - b. Hanging the specimen upside down - c. Placing in a microwave oven - d. Immersing in water | 3. Wh | ich of the follo | wing plants be | elongs to | the Anacard | faceae family? (K1- | -R, CO-4) | | | | |--------|------------------------------|------------------|--------------------|-----------------|-----------------------|------------------------------|------------------------|---------------------------------|---------------------| | | a. Sunflower | b. Ro | ose | c. Mango | d. Lavender | | | | | | 4. The | Amaranthacea | ne family is ch | aracteriz | ed by the pre | sence of edible seed | ds known as: | (K4-An, CO- | 4) | | | | a. Nuts | b. Grains | c. Leg | gumes | d. Drupes | | | | | | 5. Wh | at is the morph | ologically use | ful part o | of cardamom | (K1-R, CO-5) | | | | | | | | | | | Part B (6 m | arks) | | | | | 1. | What is the co | orrect format f | for writin | ng scientific p | lant names accordin | ng to the ICN | N? (K1-R, CO - | -2) | | | 2. | What is the po | urpose of e-flo |
ora? (K2 - | -U, CO-2) | | | | | | | 3. | Analyse the d | istinctive char | racteristi | c of the leave | s in the Rutaceae fa | amily? (K4- A | An, CO-4) | | | | 4. | Analyse the d | istinctive feat | ure of the | e flowers in t | he Lamiaceae famil | ly? (K4-An, 0 | CO-4) | | | | 5. | Write short no | otes on cotton | and coir | based on its | economic importan | ce? (K1-R , C | CO-5) | | | | | | | | | Part C | (12 marks) | | | | | 1. | Explain the cl | haracteristics a | and exan | nples of racer | nose inflorescence. | (K1-R, CO- | -1) | | | | 2. | Explain the fu | unctions of her | rbarium s | specimens in | documenting plant | diversity and | d distribution. (| (K2-U, CO-2) | | | 3. | Provide an ov CO-4) | verview of the | Cucurbi | taceae family | , including its botar | nical characte | eristics, distrib | ution, and economic importance | e. (K4-An , | | 4. | Compare and | contrast the fl | loral cha | racters of Am | naranthaceae and Eu | aphorbiaceae | e (K3-Ap, CO- | 4) | | | 5. | | | e, family | , morphology | of useful part, eco | nomic produ | icts of timber y | ielding and latex yielding plan | t studied by | | | you (K2-U , C | CO-5) | | | | | | | | | Н | ead of the Dep | artment | | | | | | Course Instructor | | | Dı | r.Sr.P.Leema I | Rose | | | | | | Dr.A. Anami Augustus Art | ul | | | | | | | | | | Dr. Sr. P. Leema Rose | | Class : III B.Sc Botany Title of the Course : Core Course VI: Cell Biology, Plant Anatomy and Embryology Semester : V Course Code : BU235CC2 | Course Code | L | Т | P | S | Credits Inst. Hours | | Total | Marks | | | | |-------------|---|---|---|---|---------------------|------------------|-------|-------|----------|-------|--| | | | | _ | | | 111000 1110 0110 | Hours | CIA | External | Total | | | BU235CC2 | 4 | 1 | _ | _ | 4 | 5 | 75 | 25 | 75 | 100 | | # **Learning Objectives:** 1. To understand the ultrastructure of prokaryotic and eukaryotic cells, including their organelles, cell cycle, and modes of cell division. 2. To explain the organization of plant tissues, primary and secondary growth, and reproductive structures, including embryological processes like megasporogenesis, double fertilization, and endosperm formation. | COs | Upon completion of this course, students will be able to: | CL | |------|--|---------| | CO-1 | explain the ultrastructure of prokaryotic and eukaryotic cells, including the structure and function of the cell wall, plasma membrane, and cell organelles. | K1 (R) | | СО-2 | illustrate the process of cell cycle, mitosis, and meiosis, and analyze their significance in growth and reproduction. | K2 (U) | | CO-3 | differentiate between various plant tissues and | K3 (Ap) | | | interpret apical organization theories, including the Tunica-Corpus and Histogen theories. | | |------|---|---------| | CO-4 | compare the primary and secondary structures of dicot and monocot roots and stems, leaves and examine anomalous secondary growth in plants | K4 (An) | | CO-5 | assess the process of megasporogenesis and megagametogenesis, and evaluate the role of double fertilization, triple fusion, and types of endosperm in seed development. | K5 (E) | Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module (Minimum 5 to Maximum 10 modules are permitted) | Торіс | Teaching
Hours | Assessment hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/ Evaluation Methods | |------|--|--|-------------------|------------------|--------------------|--|---|--|--| | I | 1 | Ultra structure of
Prokaryotic cell
and Eukaryotic cell | 2 | 1 | K2 (U) | Lecture using
Chalk & talk,
PPT
and videos,
Introductory
session, Mind
mapping, Peer
review | Mind
mapping,
Peer
review | Video
Lectures,
PPT, Notes,
Slides, | Simple definitions, Diagrammatic representation, MCQ | | | 2 | Cell wall-
Structure, and
functions of cell
wall | 2 | | K1 (R) | Lecture using
Chalk & talk,
PPT, Videos | Group Discussion, Describing visual images | PPT,
Videos
Notes, | Assignment,
Short
summary,
short test | | | 3 | Plasma membrane - structure (fluid mosaic model) and function. | 2 | 1 | K2 (U) | Lecture with PPT, Animated Videos, diagrams | Brainstormin
g, Interaction
in the
classroom | PowerPoint,
Videos | Simple definitions, MCQ, Recall steps | | | 4 | Cell cycle, | 2 | | K2 (U) | Brainstorming,
Lecture using
PPT, Chalk | Assignments,
Using visual
images | Lecture,
Google
slides, notes | Flow chart,
Open book test | | | | | | | | and board | | | | |----|---|--|---|---|--------|--|--|--|--| | | 5 | Cell division, Mitosis and Meiosis- their significance | 4 | 1 | K2 (U) | Inquiry Based Approach, PPT, Animated Videos, Permanent slides | Peer
Learning,
Group
discussion | PPT,
YouTube
videos,
notes | Chart preparation, MCQ, | | II | 1 | Structure and function of Endoplasmic reticulum, | 3 | 1 | K2 (U) | Lecture using videos, PPT, Inquiry based approach. | Describing visual images Mind mapping, Peer review | PPT,
YouTube
videos,
notes | MCQ, Oral
questioning,
Class test | | | 2 | Ribosomes,
Mitochondria, | 3 | | K2 (U) | Lecture, PPT,
Mind map
Flipped
classroom | Group Discussion, Describing visual images | YouTube videos, PPT, Notes, Slides, | Assignment,
MCQ, short
test, Recall
steps | | | 3 | Chloroplast,
Nucleus | 2 | 1 | K2 (U) | Lecture, PPT,
Chart, Animate
d Videos | Brainstormin
g, Peer
Learning, | YouTube videos, PPT, Notes, Slides, | Simple definitions, MCQ, | | | 4 | Chromosomes. | 2 | 1 | K2 (U) | Brainstorming,
PPT, Videos | Assignments,
Using visual
images | PPT, Notes,
Slides,
YouTube
videos | MCQ, Flow
chart, Open
book test | | | 5 | Cell inclusions—
starch grains,
crystals-cystolyth
and raphide. | 2 | | K1 (R) | Lecture
method,
Permanent
Slides, PPT | Group
discussion,
Mind
mapping | YouTube
videos,
PPT, Notes,
Slides, | Chart preparation, MCQ, | | Ш | 1 | Tissues - Definition, types - Simple tissue | 2 | 1 | K1 (R) | Lecture using Chalk & Board | Collaborative
Learning,
Concept | Video
Lectures,
Simulations | Formative Quiz using Google Forms, | | | system - parenchyma, collenchyma and sclerenchyma (fibers and sclereids). | | | | | Mapping | ,
Notes/Slide
s. | | |---|---|---|---|--------|---|---|--|--| | 2 | Complex tissue system - xylem and phloem. | 3 | | K1 (R) | Lecture using PPT, Chalk and board | Learning,
mindmap | Video Lecture, Simulation Tool, Interactive Notes, | Conceptual
Quiz, Group
Presentation, | | 3 | Meristem: definition, structure, function,. Apical organization and theories:Tunica- Corpus theory. Root apex: Histogen theory. | 2 | 1 | K1 (U) | Lecture with PPT, Concept-based discussion. | Concept
mapping | PowerPoint with graphical representati ons of theory. | Written
Assignment | | 4 | Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni-and multicellular, glandular and nonglandular, two examples of each) | 2 | | K1 (R) | Lecture with
Visual Aids
such as PPT | Learning, Peer Teaching, | Youtube
Videos—
Animation-
based
concepts, | Evaluation
through MCQs | | 5 | stomata and its
types; Nodal
anatomy types - | 3 | 1 | K1 (U) | Lecture using charts, posters and | Hands-On
Demonstratio
n in types of | Online
Tutorials
and Notes | Open Book
Exam
Questions | | | | unilacunar (Justicia), trilacunar (Azadirachta) and multilacunar (Aralia), Hydathodes and laticifers. | | | | photographs | stomata. | | | |----|---|--|---|---|--------|--|---|--|--| | IV | 1 | Primary growth;
Primary structure
of dicot and
monocot stem, | 2 | 1 | K2 (U) | Lecture, PPT, Permanent Slides, Chart, Drawing, Plant specimen | Mind
mapping,
Using visual
images | PPT,
YouTube
videos,
notes | MCQ, Oral
questioning,
Class test | | | 2 | root and leaf. | 3 | | K2 (U) | Inquiry based
approach, PPT,
Permanent
slide, Plant
specimen | Peer review, Group Discussion, Describing visual images |
YouTube
videos,
PPT, Notes,
Slides, | Assignment,
MCQ, short
test, Recall
steps | | | 3 | Secondary growth in stem and root – Formation of cambial ring, activity of cambial ring, secondary vascular tissue, formation of periderm, lenticels, dendrochronology, annual ring, Wood (heartwood and sapwood). | 3 | 1 | K2 (U) | Inquiry based approach, PPT, Permanent slide, Plant specimen | Brainstormin g, Describing visual images | YouTube
videos,
PPT, Notes,
Slides, | Simple definitions, MCQ, | | | 4 | Anomalous
secondary growth
of stem-
Boerhaavia | 2 | 1 | K1 (R) | Flipped classroom, Lecture method, Plant specimen, Permanent slide, PPT | Assignments,
Using visual
images, Peer
Learning, | PPT, Notes,
Slides,
YouTube
videos | MCQ, Flow
chart, Open
book test | |---|---|---|---|---|--------|---|---|--|--| | | 5 | Dracaena | 2 | | K2 (U) | Lecture, PPT,
Permanent
slide, Plant
specimen | Group
discussion,
Mind
Mapping,
Describing
visual images | YouTube
videos,
PPT, Notes,
Slides, | Chart
preparation,
MCQ, | | V | 1 | Structure of mature anther and ovule, types of ovules. | 3 | 1 | K2 (E) | Lecture using Chalk & Board, permanent slide | Collaborative
Learning,
Concept
Mapping | Online
Tutorials
and Notes: | Formative Quiz using Google Forms | | | 2 | Female gametophyte—megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesi s (<i>Polygonum</i> type in detail); | 4 | | K2 (E) | Lecture using
Chalk and
board, posters. | Learning, mindmap | Interactive
Notes, | Conceptual
Quiz, Group
Presentation, | | | 3 | Double fertilization and triple fusion. | 3 | 1 | K2 (E) | Lecture with PPT, youtube videos, Concept-based discussion. | Concept
mapping | PowerPoint and Youtube videos, Video | Written
Assignment | | | | | | | | | Lectures,
Simulations | | |---|--|---|---|--------|--|-----------------------------------|--|--------------------------------| | | | | | | | | ,
Notes/Slide
s. | | | 4 | Endosperm and its
types-free nuclear,
cellular, helobial.
Endosperm
haustoria. | 3 | 1 | K2 (E) | Lecture with
Visual Aids
such as PPT,
photographs | Learning,
Peer
Teaching, | Online
Tutorials
and Notes | Evaluation
through MCQs | | 5 | Apomixis and polyembryony | 2 | | K2 (E) | Lecture using ppt, chalk and talk, videos | Peer
Learning,
DIY Activity | Youtube
Videos—
Animation-
based
concepts, | Open Book
Exam
Questions | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Entrepreneurship, Skill Development Activities (Em / En /SD): Hands on Training on sectioning plant specimens. Course Focusing on Cross Cutting Issues: Professional Ethics Assignment: Primary structure of dicot and monocot stem, (Last date to submit – 10-09-2025) # Sample questions (minimum one question from each unit) Part A (1 mark) 1. The fluid mosaic model explains the structure of which cellular component? (K1-R, CO-1) | a) Cell wall b) Nucleus c) Plasma membrane d) Ribosome | |--| | 2. Which organelle is known as the 'powerhouse of the cell'? (K1-R, CO-1) | | a) Nucleus b) Ribosome c) Endoplasmic reticulum d) Mitochondria | | 3. The cambium which is found between the xylem and phloem is called fasicular or intrafasicular. State true or false (K2- U, CO-3). | | 4. Annual rings in woody plants are formed due to (K2-U, CO-4) | | a) Primary growth b) Cell elongation | | c) Periodic activity of cambium d) Activity of xylem parenchyma | | 5. The point of attachment between ovule body and funicle is called (K2- U, CO-5). | | Part B (6 marks) | | 1. Describe the structure of the plasma membrane based on the fluid mosaic model. (K1-R, CO-1) | | 2. Write a short note on the functions of ribosomes. (K2-U, CO-1) | | 3. Determine the organization Tunica-Corpus theory(K4- An, CO-3) | | 4. Mention the role of cambium in the formation of annual rings. (K2- U, CO-4) | | 5. Distinguish the structure and types of ovules. (K5- E, CO-5) | | Part C (12 marks) | | 1. Describe the ultrastructure of eukaryotic cells (K1-R, CO-1) | | 2. Explain the structure and functions of the following organelles: Endoplasmic reticulum, Mitochondria (K2-U, CO-2) | | 3. Describe the types of Complex tissue system - xylem and phloem with suitable diagram (K4- An, CO-3) | | 3. Describe the types of Complex tissue system - xylem and philoem with suitable diagram (K4- An, CO-3) | | 4. Explain the process of secondary growth in dicot stem. (K2- U, CO-4) | | 5. Determine the structure and organization of a typical embryo sac of angiosperm (K2- U, CO-3) | | | **Head of the Department** **Course Instructors** Dr. Sr. Leema Rose Dr. Bojaxa A Rosy Dr. A. R. Florence Class : III B. Sc Botany Title of the Course : Core Lab Course V -Plant Morphology, Taxonomy and Economic Botany Semester : V Course Code : BU235CP1 | Course Code | L | T | P | S | Credits | Inst. | Total | N | 1 arks | | |--------------------|---|---|---|---|---------|-------|-------|-----|---------------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | BU233CP1 | 1 | - | 2 | - | 2 | 3 | 45 | 25 | 75 | 100 | Pre-requisites: Theoretical understanding of plant taxonomy as well as basic laboratory skills. ### **Learning Outcomes:** 1. To understand the morphological modifications of plant organs, types of inflorescence, and economic importance of plants. 2. To develop practical skills in plant identification, herbarium preparation, and field-based botanical studies #### **Course Outcomes** | On | On the successful completion of the course, students will able to: | | | | | | | | |----|--|-----------|--|--|--|--|--|--| | 1. | explain the morphological modifications of roots, stems, and leaves, along with | K2 | | | | | | | | | different types of inflorescence. | | | | | | | | | | perform dissections and identify floral parts of selected plant families based on | K3 | | | | | | | | 2. | key diagnostic characteristics. | | | | | | | | | 3. | analyze and document plant specimens through herbarium preparation and | K4 | | | | | | | | | maintain a field notebook | | | | | | | | | 4. | examine the economic importance of selected plants by studying their | K4 | | | | | | | | | morphology, botanical names, and family classification. | | | | | | | | | 5. | assess plant diversity through field trips and critically evaluate plant specimens | K5 | | | | | | | | | based on field observations. | | | | | | | | K1-Remember; K2-Understand; K3-Apply; K4-Analyze, K5- Evaluate, K6-Create # **Total Contact hours: 45 (Including Practical Classes and Assessments)** | Unit | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|-------------------|---------------------|--------------------|--------------------------|---|--|--| | 1 | Morphology of root,
stem and leaf
modification | 3 | 1 | K2 | Experimental
Learning | Experiential Learning: Identification | https://www.a
mazon.in/Pract
ical- | Identification, Drawing the specimens | | 2 | Types of inflorescence | 3 | | K2 | Experimental
Learning | Experiential Learning: Identification | Taxonomy-
Angiosperms- | Identification, Drawing the specimens | | 3 | Dissection, identification, observation of the floral parts of the plants belonging to the families included in the syllabus. | 25 | 3 | К3 | Experimental Learning | Experiential Learning: Dissection and Identification | R-
Sinha/dp/9380
578210 | Dissection, Identification , Drawing the specimens | | 4 | Preparation and
submission of ten
Herbarium sheets and
field note book | 3 | 1 | K4 | Experimental
Learning | Experiential Learning: Hands on herbarium preparation | - | Submission
of herbarium
specimen | | 5 | Study the products of plants mentioned in the syllabus of economic botany with special reference to the morphology, botanical name and family. | 6 | | K4 | Experimental
Learning | Experiential
Learning:
Identification | https://www.k
opykitab.com/
Economic-
Botany-By-
Manoj-Kumar-
Sharma-
eBook. | Identification of economic important plants | | 6 | Field trips to places | - | K5 | Experimental | Experiential | - | Submission | |---|-------------------------|---|----|--------------|--------------|---|---------------| | | for observation, study | | | Learning | Learning: | | of field note | | | and collection of | | | | Field trip | | | | | plants prescribed in | | | | _ | | | | | the syllabus for 1 to 2 | | | | | | | | | days under the | | | | | | | | | guidance of faculties | | | | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: **Employability, Skill
Development**Activities (Em / En /SD): **Hands on Training on herbarium preparation, dissection and identification of plant specimen to their family, identifying the economically important plant products.** Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): **Environment**Sustainability Environment Sustainability activities related to Cross Cutting Issues: Field Visit, Herbarium Preparation ### Sample questions - 1. Identify the given plant, describe it in technical terms. Draw labeled sketch of the twig, L.S. of flower, other floral parts including the floral diagram. Write the floral formula. - 2. Identify the family of given plant, giving reasons. - 3. Write the botanical name and family of the given specimen - 4. Write the botanical name, family, and with neatly labeled diagram point out the economic/medicinal importance. # **Head of the Department** **Course Instructor** Dr. Sr. Leema Rose Dr. A. Anami Augustus Arul, Dr. Sr. Leema Rose Class : III B.Sc. Botany Title of the Course : CORE LAB COURSE V1 -CELL BIOLOGY, PLANT ANATOMY AND EMBRYOLOGY Semester : V Course Code : BU235CP2 | Course Code | L | T | P | S | Credits | Inst. | Total | N | Aarks | | |--------------------|---|---|---|---|---------|-------|-------|-----|--------------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | BU235CP2 | - | - | 2 | - | 2 | 2 | 30 | 25 | 75 | 100 | ### **Learning Objectives:** 3. To understand the role of different components in generating pulses and stable signals. 4. To observe the frequency generation and stability of the oscillator circuits. | On | the successful completion of the course, students will able to: | | |----|---|-----------| | 1. | explain the ultrastructure of cell organelles and cell inclusions by studying | K2 | | | photomicrographs and permanent slides. | | | | perform squash and smear techniques to identify different stages of mitosis using | K3 | | 2. | onion root tip cells. | | | 3. | examine simple and complex tissues, meristems, and secondary structures in | K4 | | | dicot and monocot plants through sectioning and microscopic analysis. | | | 4. | differentiate between various types of ovules and endosperms using permanent | K4 | | | slides and photomicrographs. | | | 5. | assess embryological structures by sectioning and dissecting anthers, ovules, and | K5 | | | embryos to understand plant reproductive development. | | K1-Remember; K2-Understand; K3-Apply; K4-Analyze, K5- Evaluate, K6-Create # **Total Contact hours: 30 (Including Practical Classes and Assessments)** | Unit | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--|-------------------|---------------------|--------------------|-----------------------|----------------------------------|-------------|--| | 1 | Study of photo micrographs of cell organelles mentioned in the theory. Observation of cell inclusions through permanent slidesstarch grains, crystalscystolyth and raphide. Identification of different stages of mitosis by using squash and smear techniques (acetocarmine)— onion root tip. | 4 | 1 | K2 | Experimental learning | Performance
based
learning | | Record diagram, Plant section assessment, identification | | 2 | Observation of Simple and complex (Primary and Secondary) tissues through permanent slides. Observation of Meristems—Shoot apex and Root apex through permanent slides | 4 | 1 | K2 | Demonstrative | Brainstormin g | | Model Exam, record diagram | | | | | 1 | 17.1 | E | D. C | D 1 | |---|--|---|---|--------------|--------------|-------------|----------------| | 3 | Sectioning: Internal | 4 | 1 | K1 | Experimental | Performance | Record | | | structure of young | | | | learning | based | diagram, | | | root, stem and leaf of dicot and monocot | | | | | learning | Plant section | | | | | | | | | assessment | | 4 | plant. Sectioning: Secondary | 4 | 1 | K2 | Experimental | Performance | Record | | 4 | structure of dicot and | 4 | 1 | KZ | learning | based | diagram, | | | monocot root. | | | | learning | learning | Plant section | | | monocot root. | | | | | learning | assessment | | 5 | Sectioning of | 5 | - | K1 | Experimental | Performance | Record | | 3 | Anomalous secondary | 3 | | KI | learning | based | diagram, | | | growth in the stems of | | | | icai iiiig | learning | Plant section | | | Boerhaavia and | | | | | learning | assessment | | | Dracaena. | | | | | | assessment | | 6 | Sectioning mature | 4 | 1 | - | Practoc | Practicals | Record | | | anther- Datura | | | | | | diagram, | | | Types of ovules- | | | | | | Anther | | | Anatropous, | | | | | | section | | | Orthotropous, | | | | | | assessment, | | | Circinotropous, | | | | | | identification | | | Amphitropous, | | | | | | | | | Campylotropous | | | | | | | | | (Permanent | | | | | | | | | slides). Types of | | | | | | | | | Endosperm - Nuclear, | | | | | | | | | cellular and | | | | | | | | | helobial(photograph) | | | | | | | | | Dissection and display | | | | | | | | | of any one stage of | | | | | | | | | embryo in Tridax. | | | | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training on sectioning plant specimen Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): NIL **Environment Sustainability activities related to Cross Cutting Issues: NIL** #### Sample questions - 1. Identify the given photo micrograph of a cell organelle. Draw and label the structure. (Eg: Mitochondria, Chloroplast, Golgi apparatus) - 2. Identify the given permanent slide showing cell inclusion. Name the plant part and inclusion observed. (Eg: Raphide in Colocasia, Cystolith in Ficus) - 3. Observe the slide of onion root tip stained with acetocarmine. Identify and label the stage of mitosis. (Eg: Prophase, Metaphase, Anaphase, Telophase) Head of the Department Course Instructors Dr. Sr. Leema Rose Dr. Bojaxa A Rosy Dr. A. R. Florence Class : III B.Sc Botany Title of the Course : Bio-analytical Techniques Semester : V Course Code : BU235DE1 | Course Code | Ι. | Т | p | S | Credits | Inst. Hours | Total Hours | Marks | | | |-------------|----|---|---|---|---------|-------------|-------------|-------|----------|-------| | Course coue | | • | - | 5 | Cicuits | mst. Hours | | CIA | External | Total | | CU233CC1 | 3 | 1 | - | - | 3 | 4 | 75 | 25 | 75 | 100 | # **Learning Objectives:** - 1. To understand the principles, operation, and maintenance of laboratory tools and equipment. - 2. To expose students to various field research methods, data analysis techniques, and modern equipment, fostering confidence to pursue research careers or entrepreneurial ventures. | On the successful completion of the course, students will be able to: | | | | | | | |---|---|----|--|--|--|--| | 1. | relate to the various biological techniques and its importance. | K1 | | | | | | 2. | explain the principles of light microscopy, compound microscopy, fluorescence microscopy and electron microscopy. | K2 | | | | | | 3. | apply suitable strategies in data collections and disseminating research findings | К3 | | | | | | 4. | compare and contrast the significance of different types of chromatography techniques. | K4 | | | | | | 5. | develop methodologies for extraction and analysis of biochemical compounds. | K5 | | | | | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Topic | | Assessment
Hours | Cognitive level | Pedagogy | Student Centric
Method | E-Resources | Assessment/
Evaluation Methods | |------|----------|--|-----------|---------------------|-------------------|--|--|---|---| | I | Microsco | opy | | | | | | | | | | 1 | Principles of microscopy; light microscopy; compound microscopy. | 2 | 3 | K1(R) &
K2(U) | Lecture with visual aids and models, Demonstration | Inquiry based learning, Live demonstration of concepts | Virtual lab
simulations,
Interactive
ppt | Formative Quiz using
Nearpod/ Quizizz/
Google Forms, slip
test, Conceptual
questions, CIA I | | | 2 | Bright field microscope,
dark field microscope,
phase-contrast microscope. | 2 | | K2(U) | Lecture with visual aids and models, Demonstration | Live demonstration of concepts | Virtual lab simulations | slip test, Conceptual
questions, CIA I | | | 3 | Fluorescence microscopy;
transmission electron
microscopy. | 2 | | K4(An) | Lecture with visualization, Demonstration | Problem based learning, Concept mapping | Virtual labs,
Interactive
ppt | Quiz, Image labeling activity, short test, CIA I | | | 4 | Scanning electron microscopy. | 2 | | | Lecture with visualization,
Demonstration | Problem based learning, Concept mapping | Virtual labs,
Interactive
ppt | Quiz, Image labeling
activity, Assignment,
slip test, CIA I | | | 5 | Microscopic measurements - micrometry. Microscopy drawing: Camera Lucida. | 4 | | K3(A) | Visual learning using tools, Demonstration | Simulation based
learning, Think-
Pair-Share | Virtual lab
simulations,
Notes,
Interactive
ppt | Slip test, Quick quiz
using Kahoot,
Conceptual questions,
CIA I | | II | Chromat | tographic Principles and App | lications | <u> </u> | | | • | | | | | 1 | Principle; paper chromatography | 2 | 3 | K2(U) &
K4(An) | Lecture with visual aids, Demonstration | Visual learning, Concept mapping, Hands-on experimentation | Interactive videos, tutorials and ppt | Formative Quiz using
Quizizz, Image
labeling activity,
CIA I | | | 2 | Thin Layer Chromatography (TLC). | 2 | | K2(U) &
K4(An) | Lecture with visual aids | Visual learning,
Concept mapping | Interactive videos, and ppt | Short test, CIA I | |-----|----------|--|---|---|-------------------|---|--|--|--| | | 3 | Column chromatography. | 2 | | K2(U) &
K3(Ap) | Lecture with visualization and demonstration | Simulation based
learning, Think-
Pair-Share | Virtual lab simulations, Interactive ppt | Conceptual quiz,
Group activity, CIA I | | | 4 | Gas chromatography - Mass spectrometry (GCMS). | 3 | | K2(U) &
K3(Ap) | Lecture with visual aids | Problem based
learning, Visual
learning | Video
lectures,
Interactive
ppt | Slip test, Case study
report, Conceptual
questions, CIA I | | | 5 | High Performance Liquid Chromatography (HPLC). | 3 | | K2(U) &
K3(Ap) | Visual learning,
Flipped classroom | Blended learning | Interactive videos | Quick quiz using
Kahoot, Case study
analysis, CIA I | | III | Electrop | horesis and pH Meter | | | | | | | | | | 1 | Basic principle and construction of pH meter. | 2 | 3 | K2(U) &
K3(Ap) | Lecture with visualization and demonstration | Hands-on
experimentation,
Simulation based
learning | Video lectures, Virtual lab simulations, Interactive ppt | Formative Quiz using
Nearpod, Conceptual
questions, CIA I | | | 2 | Operation of pH meter. | 2 | | K2(U) &
K3(Ap) | Lecture with visualization and demonstration | Simulation based learning | Virtual lab simulations | Conceptual questions,
CIA I | | | 3 | Polyacrylamide gel electrophoresis (PAGE). | 2 | | K2(U) | Lecture with visualization | Visual learning,
Concept mapping | | Slip test, Quick quiz
using Socrative, CIA
II | | | 4 | Agarose Gel
Electrophoresis. | 2 | | K2(U) | Lecture with videos and ppt, Core conceptual approach | Visual learning,
Concept mapping | Interactive videos, tutorials and ppt | Quiz, short test, Group
activity, Conceptual
questions, CIA II | | | 5 | Separation of biological
molecules using
Polyacrylamide and
Agarose Gel
Electrophoresis. | 4 | | K3(Ap) | Lecture with visual aids and models | Visual learning | Interactive videos and tutorials | Group activity,
Conceptual questions,
CIA II | |----|---------|--|----------|-----|-------------------|---|--|--|--| | IV | Spectro | photometry and Centrifugatio | n Techni | que | | | | | | | | 1 | Principle and law of absorption of colorimeter | 2 | 3 | K2(U) | Visual learning using tools, Flipped classroom | Blended learning | Video lectures, Interactive ppt | Concept explanations,
Quiz, Open book test,
CIA II | | | 2 | Construction, operation and uses of colorimeter. | 2 | | K2(U) &
K3(Ap) | Visual learning using tools, Demonstration | Hands-on experimentation | Video
lectures,
Interactive
ppt | Conceptual questions,
CIA II | | | 3 | Principle and law of absorption, construction, operation of UV-Visible spectrophotometer. | 2 | | K2(U) | Lecture with visualization | Inquiry based learning | Virtual lab simulations, Interactive ppt | Formative Quiz using
Quizizz, Conceptual
questions, CIA II | | | 4 | Uses of UV-Visible spectrophotometer. | 2 | | K2(U) &
K3(Ap) | Lecture with visualization and demonstration | Simulation based learning | Virtual lab simulations | Conceptual questions,
CIA II | | | 5 | Principles, methods of centrifugation, types of centrifuge and applications. | 4 | _ | K2(U) &
K3(Ap) | Lecture with visual aids Demonstration | Hands-on experimentation | Interactive videos and ppt | Quick quiz using
Kahoot, Slip test,
CIA II | | V | BIOST | ATISTICS | | | | | | _ | | | | 1 | Data collection methods, population samples, parameters. | 2 | 3 | K2(U) &
K4(An) | Lecture with visual aids, Case study, Data collection methodology | Problem based learning, Collaborative learning, Think-Pair-Share | Video lectures, tutorials and ppt | Formative Quiz using
Quizizz, Problem
solving, Group
activity, CIA II | | 2 | Representation of Data:
Tabular, Graphical -
Histogram. | K5(E) | Constructivist
activity, Core
conceptual
approach | Concept-based
teaching using
real-life
examples,
Problem based
learning, Visual
learning | Video
lectures,
tutorials and
ppt | Rubric based
evaluation, Peer
Assessment, CIA II | | |---|--|-------|--|--|---|--|---| | 3 | Frequency curve - Bar diagram - measures of central tendency. | 3 | K5(E) | Integrative Teaching - Visual learning and hands-on activities | Experimental Learning - Pair work, Game based learning | Video lectures, tutorials and ppt | Problem solving,
Group activity, CIA II | | 4 | Mean, Median and Mode;
Standard deviation,
Standard error. | 3 | K5(E) | Flipped classroom - Use of Analogies and Simulations | Experimental Learning data collection activity, Group discussion | SWAYAM
portal | Problem solving,
Group activity, CIA II | | 5 | Chi-square test and t-test. | 2 | K5(E) | Inquiry based
teaching -
Statistical story
telling | Problem based
learning, Think-
Pair-Share, Real-
Life Application
Tasks | NCRET portal | Quick quiz using Kahoot, slip test, Problem solving, Group activity, CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (SD): Hands-on training on Problem solving Assignment: Fluorescence microscopy ## Sample questions ## PART A (1Mark) | 1. | Which of the fol | llowing | microscopes | is most | suitable for | observing 1 | iving, | unstained | cells in high | n contrast? | (K2-U. | CO | -2 | |----|------------------|---------------|-------------|---------|--------------|---------------|--------|-----------|---------------|-------------|--------|----|----| | | | \mathcal{C} | 1 | | | \mathcal{C} | 0, | | \mathcal{C} | | . , | • | , | - a) Bright field microscope b) Dark field microscope c) Phase-contrast microscope d) Transmission electron microscope - 2. A researcher wants to separate and identify trace levels of pesticide residues in a fruit juice sample. Which of the following techniques would be the most suitable and efficient choice? (K3-Ap, CO-3) - a) Paper Chromatography b) Thin Layer Chromatography c) Gas Chromatography-Mass Spectrometry d) Column Chromatography - 3. What is the role of the glass electrode in a pH meter? (K2-U, CO-2) - a) To regulate the voltage supply during measurement - b) To detect the concentration of hydrogen ions in the solution - c) To maintain a constant pH in the reference solution - d) To separate ions during electrophoresis - 4. Differential centrifugation separates cellular components based on the differences in their _____ and _____. (K2-U, CO-2) - 5. Which of the following best describes the purpose of using a bar diagram in data representation? (K2-U, CO-2) - a) To show the relationship between two continuous variables - b) To display the distribution of continuous data using connected bars - c) To represent categorical data using separate rectangular bars - d) To calculate the mean and median of grouped data #### PART B (6 Mark) - 1. Discuss the principles of light microscopy and compound microscopy. (K2-U, CO-2) - 2. Illustrate the instrumentation of Gas chromatography-Mass spectrometry with a neat diagram. (K3-Ap, CO-3) - 3. Summarize the steps involved in performing agarose gel electrophoresis. (K2-U, CO-2) - 4. State the sedimentation concept of centrifugation. (K2-U, CO-2) - 5. Differentiate between mean, median, and mode with one example. (K4-An, CO-4) #### PART C (12 Mark) - 1. Compare scanning and transmission electron microscopy. (K4-An, CO-4) - 2. Outline the principle and instrumentation of HPLC. (K2-U, CO-2) - 3. Generalize the use of pH meters over traditional acid-base indicators. Discuss in terms of accuracy, ease of use, maintenance, and applications. (K3-Ap, CO-3) - 4. Compare the principle and instrumentation of UV-Visible spectrophotometer. (K4-An, CO-4) - 5. Evaluate the role of inferential
statistics (Chi-square test and t-test) in biological research. (K5-E, CO-5) **Head of the Department** **Course Instructor** Dr.Sr.P.Leema Rose Dr.J.Albino Wins, Dr.Sheeba Daniel & Dr.Y.Christabel Shaji **Department** : Botany Class : III B.Sc. Botany Title of the Course : ELECTIVE COURSE II: a) PHYTOBIORESOURCES Semester : V Course Code : BU235DE4 | Course Code | L | T | P | S | | Inst. Hours | Total | Marks | | | | |-------------|---|---|---|---|---|-------------|-------|-------|----------|-------|--| | | | | | | | | Hours | CIA | External | Total | | | BU235DE4 | 3 | 1 | _ | _ | 3 | 4 | 60 | 25 | 75 | 100 | | # **Learning Objectives:** 1. To understand the scope, significance, and sustainable management of plant bioresources, including their role in agriculture, biofertilizers, and conservation. 2. To explore the applications of plant bioresources in biofuels, bioplastics, and biopesticides for environmental sustainability ## **Course Outcomes** | COs | Upon completion of this course, students will be able to: | PSO addressed | CL | |------|---|---------------|--------| | CO-1 | define and explain the scope, significance, and bioprospecting of plant bioresources. | PSO - 1 | K1(R) | | CO-2 | demonstrate knowledge of biofertilizers, single-cell proteins, and their applications in sustainable agriculture. | PSO - 2 | K2(U) | | CO-3 | analyze the production and utilization of biofuels | PSO - 3 | K4(An) | | | and bioplastics from plant sources. | | | |------|---|---------|--------| | CO-4 | assess the applications, advantages, and limitations of biopesticides in sustainable agriculture. | PSO - 2 | K3(Ap) | | CO-5 | evaluate biodiversity conservation strategies, plant genetic resource management, and global policies | PSO - 8 | K5(E) | Teaching plan Total Contact hours*: 60 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessme
nt Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--------|---|-------------------|----------------------|--------------------|---|---|--|--| | I | | | | | | | | | | | | 1 | Introduction to Plant Bioresources Definition and its scope | 1 | 1 | K1(R) | Inquiry-Based Learning, Lecture with Visual Aids - GAMMA PPT, Reflective Thinking | Participative
learning-
Brain
Storming,
Group
Discussion | Video
Lectures, E-
content- MS
word | Formative Quiz using Kahoot/ Google Forms, Written Assignment- | | | 2 | Importance of plant bioresources | 2 | | K1(R) | Simulation Based Approach, Gamification | Participative
learning-
Brain
Storming,
Assignment | E-content- MS word | Individual
task, Memory
Game | | | 3 | Sustainable agriculture and organic farming. | 2 | 2 | K2(U) | Flipped
Classroom, | Experimental Learning- | Video
Lectures, E- | Conceptual
Quiz, Group | | | 4 | Green revolution. | 2 | | K2(U) | Mind Map,
Stimulation
based approach | O-Lab, Charts, Demonstrati ve approach | content- MS
word | Presentation, MCQ. Slip Test, | |----|---|--|---|---|--------|---|--|---------------------------------------|--| | | 4 | Bioprospecting:
Concept; Role of
traditional knowledge
in bioprospecting | 2 | | K2(U) | Thinking, Lecture with illustration | Participative
learning-
Brain
Storming,
Debate | Lectures, E-
content- MS
word | MCQ, Open
book test,
Question-
Answer
Session | | | 5 | Traditional Knowledge
Digital Library
(TKDL). | 2 | | K3(Ap) | Integrative
Teaching,
Simulation
Based Approach | Experiential Learning- Hands-On Demonstrati on, Chart. | Interactive
PPT, Youtube
Videos | Quizzes, Just a
Minute, Flow
Chart Analysis | | II | 1 | Biofertilizers: Scope
and importance.
Bacterial Fertilizer –
Rhizobium – mass
production and uses. | 2 | 1 | K4(An) | Flipped
Classroom,
Mind Map,
Inquiry based
approach | Experiential Learning- Hands-On Demonstratio n, Chart. | Interactive
PPT, Youtube
Videos | Online Quiz-
Quizzes,
Product
Evaluation,
Open book test | | | 2 | Cyanobacterial Biofertilizer- <i>Nostoc</i> - mass production and application. | 2 | | K4(An) | Blended based
approach,
Reflective
approach | Collabrative
learning-
Hands-On
Demonstratio
n, Charts and
Models | Interactive
PPT, Youtube
Videos | Unannounced test, Interpretation of Results | | | 3 | Azolla- mass production and application. | 1 | 1 | K4(An) | Integrative approach, Mind Map | Experiential
Learning-
Hands-On | Interactive
PPT, Youtube
Videos | Team Work
Analysis and
Interpretation, | | | | | | | | | Demonstratio n, Chart. | | Slip Test. | |-----|---|---|---|---|--------|--|--|---------------------------------------|--| | | 4 | Single Cell Protein and Mycoprotein: Mass Cultivation of Spirulina. | 2 | | K4(An) | Reflective
Thinking,
Flipped
Classroom | Collabrative learning-
Hands-On Demonstratio n, Charts and Models | Interactive
PPT, Youtube
Videos | Flow Chart
Analysis, SCP
Products
Exhibit, Group
Discussion. | | | 5 | Mushroom Cultivation-Pleurotus and Agaricus. | 2 | 1 | K4(An) | KWL, Hands on
Trainning
sessions. | Experiential Learning- Hands-On Demonstratio n, Project based learning | Interactive
PPT, Youtube
Videos | Flow Chart
Analysis,
Mushroom
Receipes
Exhibits,
MCQ. | | III | 1 | Biofuels - Importance of biofuel | 2 | 1 | K2(U) | Lectures with
Illustration,
Brain Storming | Participative
Learning-
Debate, Role
play | Econtent with GAMMA PPT | Quizzes, Open
book test,
MCQ | | | 2 | Biodiesel Production <i>Pongamia</i> and <i>Jatropa</i> . | 2 | | K3(Ap) | Reflective
Thinking,
Inquiry Based
Approach | Experiential Learning- Hands-On Demonstratio n, Project based learning | Video display,
O lab | Unannounced test, Interpretation of Results | | | 3 | Alcohols – the liquid fuel- ethanol production. | 2 | 2 | K3(Ap) | Hands on
Trainning,
Flipped | Project
based
learning-O | You tube videos | Team Work
Analysis and
Interpretation, | | | | | | | | classrooms | lab | | Slip Test. | |----|---|--|---|---|--------|---|---|---------------------------|--| | | 4 | Gaseous fuels: Biogas production and Hydrogen fuel. | 2 | | K3(Ap) | Lectures with Illustration, Simulation based approach | Collabrative learning-
Demonstratio | E-content with MS Word | Flow Chart Analysis, Group Discussion, Just a Minute | | | 5 | Plant-derived bioplastics | 1 | | K2(U) | Demonstrative approach, Gamification | Participative learning-Debate | Interactive
PPT | Flow Chart
Analysis,
MCQ.
Assesing
Memory game,
CIA I | | IV | 1 | Biopesticides:
Introduction, desirable
qualities of
biopesticides | 3 | 1 | K1(R) | Reflective
Thinking,
Inquiry Based
Approach | Participative learning-Brain storming, Debate | Econtent with GAMMA PPT | Quiz using Kahoot / Google Forms, Oral Presentation, | | | 2 | Microbial Pesticides –
Fungi and Viruses | 2 | | K2(U) | Flipped
Classroom -
Brain storming,
mind map | Collabrative learning-
Team Discussions, Charts and Models | Video display,
O lab | Slip Test,
Group
Presentation,
MCQ. | | | 3 | Microbial Pesticides –
Bacteria | 1 | 1 | K2(U) | Integrative Teaching - Chartts and Visual Images | Experiential
Learning -
Panel
Discussion | E-content with
MS Word | Kahoot, Flow
chart analysis | | | 4 | Advantages and disadvantages of Microbial Pesticides | 1 | 1 | K2(U) | Flipped classrooms | Participative learning-Brain storming, | E-content with
MS Word | MCQ, Open
book test,
Question-
Answer | | | | | | | | | Debate | | Session | |---|---|--|---|---|--------|---|--|--|--| | | 5 | Application of Biopesticides | 2 | | K4(An) | Blended
Learning, KWL | Experiential Learning- Demonstratio n, Individual work | E-content with
MS
Powerpoint | Quizzes, Just a
Minute, Flow
Chart Analysis | | V | 1 | Biodiversity
conservation: Species
extinction, causes of
Biodiversity loss;
IUCN threat categories | 2 | 1 | K1(R) | Inquiry-Based Learning, Lecture with Visual Aids - GAMMA PPT, Reflective
Thinking | Participative
learning-
Brain
Storming,
Role play | Video
Lectures, E-
content- MS
word | Just a minute,
Question and
Answer
Session | | | 2 | Red data book;
Biodiversity surrogates | 1 | | K1(R) | Flipped
Classroom,
Mind Map,
Stimulation
based approach | Participative Learning- Charts and models, Demonstra tive approach | Youtube videos, GAMMA PPT, | Quiz, Group
Presentation,
MCQ. | | | 3 | In situ conservation
strategies— National
parks | 2 | 2 | K2(U) | Blended
Learning, KWL | Participative Learning- Charts and models | E-content- MS word | Kahoot,
Exhibit | | | 4 | Ex situ conservation
strategies— Botanical
gardens Role of
botanical gardens, gene
banks, and seed banks | 2 | | K2(U) | Reflective
Thinking,
Lecture with
illustration | Experiential learning-
Endangered species exhibit | Video
Lectures, E-
content- MS
word, live | Slip Test,
MCQ, Open
book test,
Question-
Answer | | | in plant conservation. | | | | | specimens | Session | |---|---|---|--------|---|---|---------------------------------------|---| | 5 | Strategies for biodiversity conservation and plant genetic resource management. | 2 | K4(An) | Integrative Teaching, Simulation Based Approach | Experiential Learning- Hands-On Demonstrati on, Chart, mind map | Interactive
PPT, Youtube
Videos | Quizzes, Just a
Minute, Flow
Chart
Analysis, CIA
II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Entrepreneurship, Skill Development Activities (Em / En /SD): Hands on Training on Mushroom Cultivation, SCP Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Activities related to Cross Cutting Issues: Exhibit on Plant Derived Bioplastics Assignment: Red data book; Biodiversity surrogates; In situ conservation strategies—National parks ## **Sample Questions** Part A (1 mark) 1. Assertion (A): Bioprospecting helps in discovering new drugs and bioactive compounds from plants. Reason (R): Traditional knowledge often provides clues about the medicinal properties of plants.(K4-An, CO-1) - A. Both A and R are true, and R is the correct explanation of A. - B. Both A and R are true, but R is not the correct explanation of A. - C. A is true, but R is false. - D. A is false, but R is true. | 2. Which microorganism is commonly associated with nitrogen fixation in leguminous plants? a) Azolla b) Nostoc c) Rhizobium d) Bacillus (K2-U, CO-2) | | | | | | | | |---|----|--|--|--|--|--|--| | 3. Spirulina is widely cultivated for its protein content- state True or False (K1-R, CO-3) | | | | | | | | | 4. The most commonly used bacterial biopesticide is (K1-R,CO-4) | | | | | | | | | 5. The primary purpose of biodiversity conservation strategies is (K2-U, CO4) | | | | | | | | | Part B (6 marks) | | | | | | | | | State the concept of bioprospecting. (K1-R, CO-1) Outline the mass production of bacterial fertilizer. (K3-Ap, CO-2) | | | | | | | | | Elucidate the production process of biogas (K2-U, CO-3) Justify the applications of biopesticides (K4-An, CO-4) cluate the different strategies used for biodiversity conservation (K5-E, CO-5) | | | | | | | | | Part C (12 marks) | | | | | | | | | Explain the about the traditional knowledge digital library (TKDL) (K1-R, CO-1) Discuss the mass cultivation of Spirulina and its applications (K2-U, CO-2) | | | | | | | | | 3. Analyse the production of biodiesel from Jatropa and its benefits (K4-An, CO-3) | | | | | | | | | 4. Outline the production of bacteiral and fungal biopesticides(K4-An, CO-4) | | | | | | | | | 5. Describe the role of botanical garden, gene bank and seed bank in plant conservation. (K2-U, CO-5) | | | | | | | | | Head of the Department Course Instructor | | | | | | | | | Dr.Sr.P.Leema Rose Dr.J.Albino Wins & Dr.A.R.Florence | ce | | | | | | |